
6

IT & ITES Related Theory for Exercise 2.1.96A
COPA - JavaScript and creating Web page

Using JavaScript Variable and data types
Objectives : At the end of this lesson you shall be able to
• explain variables in JavaScript
• explain various data types in JavaScript.

Variables

JavaScript variables are containers for storing data values.

In example 1, a, b, and c, are variables:

Example 1

var a = 12;
var b = 10;
var c = a + b;

From example 1, we can understand that

• a stores the value 12

• b stores the value 10

• c stores the value 22

In example 2, mark1, mark2, and total, are variables:

Example 2

var mark1 = 85;
var mark2 = 66;
var total = marks1 + mark2;

In programming, just like in algebra, we use variables
mark1 and mark2 to hold values and use variables in
expressions like total = mark1 + mark2. From the example
above, and calculate the total to be 151.

JavaScript Identifiers

All JavaScript variables must be identified with unique
names. These unique names are called identifiers.
Identifiers can be short names like a and b or more
descriptive names like mark1, mark2, total, age, sum,
total volume.

The general rules for constructing names for variables are:

• Names can contain letters, digits, underscores, and
dollar signs.

• Names must begin with a letter

• Names can also begin with $ and _

• Names are case sensitive (a and A are different
variables)

• Reserved words like JavaScript keywords cannot be
used as names

Note: JavaScript identifiers are case-sensitive.

The Assignment Operator

In JavaScript, the equal sign (=) is an “assignment”
operator, not an “equal to” operator.

x = x + 10;

It assigns the value of x + 10 to x. It calculates the value of
x + 10 and puts the result into x. The value of x is
incremented by 10.

JavaScript Data Types

JavaScript variables can hold numbers like 100 and text
values like “Santhosh kumar”.

In programming, text values are called text strings. Java
Script can handle many types of data, but for now, just
think of numbers and strings.Strings are written inside
double or single quotes. Numbers are written without
quotes. If you put a number in quotes, it will be treated as
a text string.

Example 3

var pi = 3.14;
var person = “santhoshkumar”;
var city = “coimbatore”;

Declaring JavaScript Variables

Creating a variable in JavaScript is called declaring a
variable. JavaScript variable is declared with the var
keyword.

var traineeName;

After the declaration, the variable has no value. Technically
it has the value of undefined. To assign a value to the
variable, use the equal signs.

traineeName = “Santhosh Kumar”;

You can also assign a value to the variable when you
declare it.

var traineeName = “Santhosh Kumar”;

Copyright Free under CC BY Licence

7

In the example below, we create a variable called
traineeName and assign the value “Santhosh Kumar” to
it.

Then we “output” the value inside an HTML paragraph with
id=”demo”:

<p id =“demo”></p>
<script>
var traineeName = “santhoshkumar”;
document.getElementById(“demo”).innerHTML
= traineeName;

</script>

Note: It is a good programming practice to
declare all variables at the beginning of a
script.

You can declare many variables in one statement. Start
the statement with var and separate the variables by
comma.

Example 4

var traineeName = “santhoshkumar”,city =
‘’coimbatore”, total=”151";

Undefined value

In computer programs, variables are often declared without
a value. The value can be something that has to be
calculated, or something that will be provided later, like
user input.

A variable declared without a value will have the value
undefined.

The variable traineeName will have the value undefined
after the execution of this statement.

Example 5

var traineeName;

Re-Declaring JavaScript Variables
If you re-declare a JavaScript variable, it will not lose its
value.The variable traineeName will still have the value
“santhoshkumar” after the execution of these statements.

Example 6

var traineeName = “santhoshkumar”;

var traineeName;

JavaScript Arithmetic

Do the arithmetic with JavaScript variables, using operators
like = and +

Example 7

var x = 8 + 2 + 5;

Now x has the value 15.

You can also add strings, but strings will be concatenated:

Example 8

var x = “Dharani” + “ “ + “Shree”

Now x has the value Dharani Shree

The result of the following example gives 725.

Example 9

var x = “7” + 2 + 5;

Note: If you put a number in quotes, the rest of
the numbers will be treated as strings, and
concatenated.

The result of the following example gives 75.

Example 10

var x = 3 + 4 + “5”;

Data types

In programming, data types is an important concept. To
be able to operate on variables, it is important to know
about the data type.

JavaScript variables can hold many data types like
numbers, strings, objects and more.

Example 11

var side = 10; // Number

var firstName = “Rithika”; // String

var x = {firstName:”Harini”, lastName:”Kumar”}; // Object

Without data types, a computer cannot safely solve this.

Example 12

var a = 10 + “Apple”;

JavaScript will treat the example above as,

var a = “10” + “Apple”;

The output is 10 Apple

Note: When adding a number and a string,
JavaScript will treat the number as a string.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.1.96A

Copyright Free under CC BY Licence

8

JavaScript evaluates expressions from left to right. Different
sequences can produce different results.

Example 13

var y = 20 + 5 + “Apple”;

The result is 25Apple

Example 14

var y = “Apple”+20 + 5 ;

The result is Apple205.

Note: In the first example, JavaScript treats 20
and 5 as numbers, until it reaches “Apple”.In
the second example, since the first operand is
a string, all operands are treated as strings.

Dynamic data types

JavaScript has dynamic types. This means that the same
variable can be used to hold different data types:

Example 15

var z; // Now z is undefined

z = 10; // Now z is a Number

z = “Sakthi”; // Now z is a String

JavaScript Strings

A string or a text string is a series of characters like “Harini
Kumar”. Strings are written with quotes. You can use single
or double quotes.

Example 16

var bikeName = “Yamaha R15”; // Using double quotes

var bikeName = ‘ Yamaha R15’; // Using single quotes

You can use quotes inside a string, as long as they don’t
match the quotes surrounding the string:

Example 17

var answer = “It’s OK”; // Single quote inside
 double quotes

var answer = ‘Patel is called // Double quotes inside
“Iron Man”’; single quotes

JavaScript Numbers

JavaScript has only one type of numbers. Numbers can
be written with or without decimals.

Example 18

var num1 = 87.0; // Written with decimals

var num2 = 87; // Written without decimals

Extra large or extra small numbers can be written with
scientific (exponential) notation:

Example 19

var exp1 = 232e5; // result is 23200000

var z = 123e-5; // result is 0.00232

Example 20

 var p = 3:

 var q = 3;

 var r = 5;

 (p == q) // Returns true

 (p == r) // Returns false

Note : Booleans are often used in conditional
testing.

JavaScript Arrays

JavaScript arrays are written with square brackets. Array
items are separated by commas. The following code
declares (creates) an array called bikes, containing three
items (bike names):

Example 21

var bikes = [“Yamaha”, “TVS”, “Royal Enfield”];

Note: Array indexes are zero-based, which
means the first item is [0], second is [1], and so
on.

JavaScript Objects

JavaScript objects are written with curly braces. Object
properties are written as name:value pairs, separated by
commas.

Example 22

var personName = {firstName:”Harini”,lastName:
”Kumar”, age:13,height.
”155 cms”};

The object (personName) in the example 22 above has 4
properties: firstName, lastName, age and height.

The typeof Operator

The JavaScript typeof operator is used to find the type of
a JavaScript variable.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.1.96A

Copyright Free under CC BY Licence

9

The typeof operator returns the type of a variable or an
expression.

Example 23

typeof “” // Returns “string”

typeof “Rithika” // Returns “string”

typeof “Harini Kumar” // Returns “string”

typeof0 // Returns “number”

typeof81 // Returns “number”

typeof8.14 // Returns “number”

typeof(3+2) // Returns “number”

Undefined

In JavaScript, a variable without a value, has the value
undefined. The typeof is also undefined.

Example 24

var bike; // Value is undefined, type is
 undefined

Note : Any variable can be emptied, by setting
the value to undefined. The type will also be
undefined.

Empty Values

An empty value has nothing to do with undefined. An
empty string has both a legal value and a type.

Example 25

var bike = “”; // The value is “”, the typeof
 is “string”

Null
In JavaScript null is “nothing”. It is supposed to be
something that doesn’t exist. In JavaScript, the data type
of null is an object. You can empty an object by setting it
to null.

Example 26

var personName = {firstName:”Harini”,last Name;
 ”Kumar”, age:13, height:”155 cms”};

personName = null; //Now value in null, but
type is still an object

You can also empty an object by setting it to undefined:

Example 27

var personName = {firstName:”Harini”, lastName:
 ”Kumar”, age:13, height:”155 cms”};

personName = undefined; // Now both value and
 type is undefined.

Difference Between Undefined and Null

Undefined and null are equal in value but different in type.

Example 28

typeof undefined // undefined

typeof null // object

null === undefined // false

null == undefined // true

Primitive Data

A primitive data value is a single simple data value with no
additional properties and methods. The typeof operator
can return one of these primitive types.

• string

• number

• boolean

• undefined

Example 29

typeof “Rajesh” // Returns “string”

typeof 1.44 // Returns “number”

typeof true // Returns “boolean”

typeof false // Returns “boolean”

typeof a // if a has no value, it returns
 “undefined”

Complex Data

The typeof operator can return one of two complex types:

• function·

• object

The type of operator returns object for both objects, arrays
and null. It does not return object for functions.

Example 30

typeof {name, ‘Karthik’, age 27} // Returns “object”

typeof [10, 20, 30, 40, 50] // Returns “object”
 (not “array”, see
 note below)

typeof null // Returns “object”

typeof function sampleFunc() { } // Returns “function”

Note: The typeof operator returns “object” for
arrays because in JavaScript arrays are
objects.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.1.96A

Copyright Free under CC BY Licence

