
119

IT & ITES Related Theory for Exercise 2.2.114 & 2.2.115
COPA - Programming with VBA

User defined functions in VBA
Objectives: At the end of this lesson you shall be able to
• create user defined functions
• describe passing values to functions byval and byref
• describe using arrays with functions
• describe the scope of variables
• describe the access specifiers public and private.

Introduction

In Excel Visual Basic too, like in most programming
languages, a set of commands to perform a specific task
is placed into a procedure, which can be a function or a
subroutine. The main difference between a VBA function
and a VBA subroutine is that a function (generally) returns
a result, whereas a subroutine does not.

Therefore, if you wish to perform a task that returns a
result (ex. summing of a group of numbers), you will
generally use a function, but if you just need a set of actions
to be carried out (ex. formatting a set of cells), you might
choose to use a subroutine.

User Defined Functions

One of the most power features of Excel VBA is that you
can create your own functions or UDFs. A UDF (User
Defined Function) is simply a function that you create
yourself with VBA for your own defined tasks. UDFs are
often called "Custom Functions". A UDF can remain in a
code module attached to a workbook, in which case it will
always be available when that workbook is open.
Alternatively you can create your own add-in containing
one or more functions that you can install into Excel. Here
the user-defined functions can be entered into any cell or
on the formula bar of the spreadsheet just like entering
the built-in formulas of the MS Excel spreadsheet.

Custom functions, like macros, use the Visual Basic for
Applications (VBA) programming language. They differ from
macros in two significant ways. First, they use function
procedures instead of sub procedures. They start with a
Function statement instead of a Sub statement and end
with End Function instead of End Sub. Second, they
perform calculations instead of taking actions. Certain
kinds of statements (such as statements that select and
format ranges) are generally excluded from custom
functions.

A simple function may look like this:

Function area()

Dim l, b

l = 10

b = 20

Debug.Print "area Is " & l * b

End Function

When executed from the immediate window this function
displays the area.

Alternately this function can be called by another
subroutine, for ex.

Sub test_fn()

Call area

End Sub

Returning a value from the procedures

In the example given below, the area() function calculates
l*b.

The subroutine that calls this function is returned this value.

Sub test_fn()

Debug.Print "The function has returned the value " & area

End Sub

Function area()

Dim l, b, A

l = 10

b = 20

area = l * b

End Function

The result will be:The function has returned the value 200

Passing Arguments to functions

We can pass the arguments in two different ways:

Copyright Free under CC BY Licence

120

1 By Value (ByVal): We pass the copy of the actual value
to the arguments

2 By Reference (ByRef): We pass the reference to the
arguments

By Ref is the default method of passing argument type in
VBA. This means, if you are not specifying any type of
the argument it will consider it as ByRef type. However, it
is always a good practice to specify the ByRef even if it is
not mandatory.

The following example shows the method of passing
variables to a function byVal.

Sub test_fn()

Dim a, b As Integer

a = 4

b = multiply(a)

Debug.Print "a is " & a

Debug.Print "The function has returned the value " & b

End Sub

Function multiply(ByVal a As Integer)

a = a * 10

multiply = a

End Function

The result of this program will be :

a is 4

The function has returned the value 40

a is 4

This means that the value of the variable that was passed
is not disturbed by the function.

The following example shows the method of passing
variables to a function byRef.

Sub Test()

Dim A As Integer

A = 10

Debug.Print "The function has returned the value " &
Modify(A)

Debug.Print "A is now " & A

End Sub

Function Modify(ByRef A As Integer)

A = A * 2

 Modify = A

End Function

The result will be:

The function has returned the value 20

A is now 20

Calling a User Defined Function from Worksheet:

You call the user defined functions as similar to the built-
in excel function. To do this type the arguments in the
cells and type the name of the function as is done with
normal functions in Excel.

Passing Arrays to User Defined functions

A Function can accept an array as an input parameter.
Arrays are always passed by reference (ByRef). You will
receive a compiler error if you attempt to pass an array
ByVal. This means that any modification that the called
procedure does to the array parameter is done on the
actual array declared in the calling procedure.

(If you need to pass an array ByVal then you would need
to use the Variant data type.)

An example of passing an array to a function is as follows:

Sub test()

Dim arr(1 To 10) As Integer

Dim i As Integer

'populates the array with the values 1 to 10

For i = 1 To 10

arr(i) = i

Next i

'call the function example 1 with arrIntegers as an input
parameter

Call fn1(arr)

For i = 1 To 10

Debug.Print arr(i); Spc(2);

Next i

End Sub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

121

'prints the values in arrIntegers to column A

Sub fn1(ByRef arr() As Integer)

Dim i As Integer

For i = LBound(arr) To UBound(arr)

 arr (i) = arr (i) * 2

 Cells (i,1) = arr (i)

Next i

End Sub

Scope of variables

The term Scope is used to describe how a variable may
be accessed. Depending on where and how a variable is
declared, it may be accessible only to a single procedure,
to all procedures within a module, and so on up the
hierarchy of a project or group of related projects. The
term visibilty is also is sometimes used to describe scope.

There are four levels of Scope:

• Procedure-Level Scope

• Module-Level Scope

• Project-Level Scope

• Global-Level Scope

Fig 1 shows the various scopes and their levels.

Procedure (local) scope

A local variable with procedure scope is recognized only
within the procedure in which it is declared. A local variable
can be declared with a Dim or Static statement.

When a local variable is declared with the Dim statement,
the variable remains in existence only as long as the
procedure in which it is declared is running. Usually, when
the procedure is finished running, the values of the
procedure's local variables are not preserved, and the
memory allocated to those variables is released. The next
time the procedure is executed, all of its local variables
are reinitialized.

For Example the following subroutine has been created in
Module1 code.

Sub disp()

Dim s As string

s="hello"

MsgBox s

End Sub

Run the subroutine "disp" in Module1 and it will display
the message "Hello" in the message box.

Now the following subroutine has been created in Sheet1
code to call the disp() subroutine from Module1.

Sub Button1_Click()

disp

End Sub

This will generate an error since the subroutine disp() and
the variable s are local to Module1 and cannot be accessed
from elsewhere.

Static:

A local variable declared with the Static statement remains
in existence the entire time Visual Basic is running. The
variable is reset when any of the following occur:

• The macro generates an untrapped run-time error.

• Visual Basic is halted.

• You quit Microsoft Excel.

• You change the module.

For example, in the FindTotal example, the Accumulate
variable retains its value every time it is executed. The
first time the module is run, if you enter the number 2, the
message box will display the value "2." The next time the
module is run, if the value 3 is entered, the message box
will display the running total value to be 5.

Sub FindTotal()

Static Total

Dim n as integer

n =InputBox("Enter a number: ")

Total = Total + n

MsgBox "The total is " &n

End Sub

Procedure scope

Global scope

Project scope

Module scope

Fig 1

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

122

Module scope

A variable that is recognized among all of the procedures
on a module sheet is called a "module-level" variable. A
module-level variable is available to all of the procedures
in that module, but it is not available to procedures in
other modules. A module-level variable remains in existence
while Visual Basic is running until the module in which it
is declared is edited. Module-level variables can be
declared with a Dim or Private statement at the top of the
module above the first procedure definition.

At the module level, there is no difference between Dim
and Private. Note that module-level variables cannot be
declared within a procedure.

Note If you use Private instead of Dim for module-level
variables, your code may be easier to read (that is, if you
use Dim for local variables only, and Private for module-
level variables, the scope of a particular variable will be
more clear).

In the following example, two variables, A and B, are
declared at the module level. These two variables are
available to any of the procedures on the module sheet.
The third variable, C, which is declared in the Example3
macro, is a local variable and is only available to that
procedure.

Note that in Test4, when the macro tries to use the variable
C, the message box is empty. The message box is empty
because C is a local variable and is not available to Test4,
whereas variables A and B are.

Dim A As Integer ' Module-level variable.

Private B As Integer ' Module-level variable.

Sub Test1()

A = 10

B = A * 10

End Sub

Sub Test2()

MsgBox "The value of A is " & A

MsgBox "The value of B is " & B

End Sub

Sub Test3()

Dim C As Integer ' Local variable.

C = A + B

MsgBox "The value of C is " & C

End Sub

Sub Test4()

MsgBox A

MsgBox B

MsgBox C

 ' The message box is blank since C is a local variable.

End Sub

Project Scope

Project scope variables are those declared using the Public
keyword. These variables are accessible from any
procedure in any module in the project. In Excel, a Project
is all of the code modules, userforms, class modules, and
object modules (e.g. ThisWorkbook and Sheet1) that are
contained within a workbook.

In order to make a variable accessible from anywhere in
the project, you must use the Public keyword in the
declaration of the variable. However, this makes the variable
accessible to any other project that reference the project
containing the variable. If you want a variable to be
accessible from anywhere within the project, but not
accessible from another project, you need to use Option
Private Module as the first line in the module (above and
outside of any variable declaration or procedure). This option
makes everything in the module accessible only from within
the project. The project variables that should not be
accessible to other projects should be declared in a module
that has the Option Private Module directive. Variables
that should be accessible to other project should be
declared in a different module that does not use the Option
Private Module directive. In both cases, however, you need
to use the Public keyword.

Global Scope

Global scope variables are those that are accessible from
anywhere in the project that declares them as well as any
other project that references the first project. To declare a
variable with global scope, you need to declare it using
the Public keyword in a module that does not use the
Option Private Module directive. In order to access variables
in another project, you can simply use the variable's name.
If, however, it is possible that the calling project also has a
variable by the same name, you need to prefix the variable
name with the project name. For example, if Project1
declares a global variable named x, and Project2 references
Project1, code that is in Project2 can access x with either
of the following lines of code:

x = 78

Project1.x = 78

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

123

If both Project1 and Project2 have variables with at least
project scope, you need to include the project name with
the variable. For clarity and maintainability, you should
always include the project name when accessing a variable
that is declared in another project. Even if this is not
necessary, it makes the code more readable and
maintainable.

There is no way to give some variables project, but not
global, scope and give others in the same module global
scope. Project versus global scope is handled only at the
module level, not at the variable level.

The Access Specifiers

One of the techniques in object-oriented programming is
encapsulation. It concerns the hiding of data in a class
and making them available only through its methods. Most
programming languages implementing OOPS allow you to
control access to classes, methods, and fields via so-called
access modifiers. The access to classes, constructors,
methods and fields are regulated using access modifiers
i.e. a class can control what information or data can be
accessible by other classes. The VBA access specifiers
are:

1 Private

2 Public

A Public procedure is accessible to all code inside the
module and all code outside the module, essentially
making it global. A VBA Private Sub can only be called
from anywhere in the Module in which it resides. A Public
Sub in the objects, ThisWorkbook, ThisDocument, Sheet1,
etc. cannot be called from anywhere in a project. However,
if you declare a Module level variable with the Public
Keyword it can be used anywhere in the project and retains
its value.

If you exclude the key word private in your declaration then
by default the procedure is public. So Sub MySub()
and Public Sub MySub() are exactly the same thing.

Public [variable] means that the variable can be accessed
or used by subroutines in outside modules. These variables
must be declared outside of a subroutine (usually at the
very top of your module). You can use this type of variable
when you have one subroutine generating a value and you
want to pass that value on to another subroutine stored in
a separate module.

A Private procedure is only available to the current module.
It cannot be accessed from any other modules, or from the
Excel workbook.Private Sub sets the scope so that
subroutines from outside modules cannot call that particular
subroutine. This means that a sub in Module 1 could not
use the Call method to initiate a Private Sub in Module 2.

Private [variable] means that the variable cannot be
accessed or used by subroutines in other modules. In
order to be used, these variables must be declared outside

of a subroutine (usually at the very top of your module).
You can use this type of variable when you have one
subroutine generating a value and you want to pass that
value on to another subroutine in the same module.

Dim[variable] is used to state the scope inside of a
subroutine (you cannot use Private in its place). Dim can
be used either inside a subroutine or outside a subroutine
(using it outside a subroutine would be the same as using
Private).

Example of Public, Private Variables and Procedures.

Module 1 code

Dim x As Integer ' This is a Private Variable since it is
declared using Dim.

Public y As Integer

Sub First_Sub()

 x = 10

 y = 20

 Call Third_Sub()

End Sub

Private Sub Second_Sub()

MsgBox "Gone through First, Second and Third
Subroutines !"

End Sub

Module 2 code

Sub Third_Sub()

Debug.Print x

Debug.Print y

Call Second_Sub()

End Sub

The two variables x and y that are declared outside a
subroutine. This means that their values can carry over
into other macros. The variable x has a private scope so
only subroutines in the same module can access its value.
The variable y has a public scope, meaning that
subroutines inside and outside its module can access its
value.

The First_Sub() assigns values to x and y and then initiates
the Third_Sub().

Third_Sub() can be called even though it is not in the same
module because it is a Public Sub.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

124

The Third_Sub() has been designed to display the values
of x and y in the immediate window. When you try to print
variable x it outputs nothing. This is because x does not
exist in Module 2. Therefore, a new variable x is created
in Module 2 and since we did not give this new x a value,
nothing is printed for the statement Debug.Print x

When we print the value of the variable y, 12 is displayed
in the Immediate Window. This is because Module 2
subroutines have access to the public variables declared
in Module 1.But the statement "Call Second_Sub()" in the
Third_Sub() will result in an error. This is because we are

trying to call a private subroutine " Second_Sub" from here.
The following changes can be done to avoid this:

1 We could remove the word "Private" from
Display_Message

2 We could replace "Private" with "Public" in
Second_Sub()

3 We can use the Application level and instead of using
Call we could write Application.Run "Second_Sub " (this
method serves as an override in case we wanted to
keep Second_Sub private for subroutines outside the
module.)

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

125

IT & ITES Related Theory for Exercise 2.2.116
COPA - Programming with VBA

Create and Edit Macros
Objective: At the end of this lesson you shall be able t0
• explain about Macros in VBA.

Macros offer a powerful and flexible way to extend the
features of Excel. They allow the automation of repetitive
tasks such as printing, formatting, configuring, or
otherwise manipulating data in Excel. In its’ simplest form,
a macro is a recording of your keystrokes. While macros
represent one of the stronger features found in Excel, they
are rather easy to create and use. There are six major
points that I like to make about macros as follows.

1 Record, Use Excel, Stop Recording

To create a macro, simply turn on the macro recorder,
use Excel as you normally do, then turn off the recorder.
Presto – you have created a macro. While the
process is simple from the user’s point of view,
underneath the covers Excel creates a Visual Basic
subroutine using sophisticated Visual Basic
programming commands.

2 Macro Location

Macros can be stored in either of two locations,
as follows:

The workbook you are using, or the Personal Macro
Workbook (which by default is hidden from view) If
the macro applies to all workbooks, then store it
in the Personal Macro Workbook so it will always be
available in all of the Excel workbooks; otherwise store
it in the current workbook. A macro stored in the current
workbook will embedded and included in the
workbook, even if you email the workbook to
another user.

3 Assign the Macro to an Icon, Text or a Button
To make it easy to run your macro, you should assign
it to a toolbar icon so it will always be available no
matter which workbooks you have open. If the macro
applies only to the current workbook, then assign it to
Text or a macro Button so it will be quickly available in
the current workbook.

4 Absolute versus Relative Macros
An “Absolute” macro will always affect the same cells
each time whereas a “Relative” macro will affect those
cells relative to where the cursor is positioned when
invoke the macro. It is crucial that understand the
difference.

5 Editing Macros
Once created, you can view and/or edit your macro
using the View Macros option. This will open the macro
subroutine in a Visual basic programming window and
provide you with a plethora of VB tools.

6 Advanced Visual Basic Programming

For the truly ambitious CPA, in the Visual Basic
Programming window, you have the necessary tools
you need to build very sophisticated macros with dialog
boxes, drop down menu options, check boxes, radio
buttons – the whole works. To see all of this power,
turn on the “Developer Tab” in “Excel Options”.
Presented below are more detailed comments and
stepbystep instructions for creating and invoking
macros, followed by some example macros.

Page Setup Macro Start recording a new macro called
page setup. Select all of the worksheets and then choose
Page Setup and customize the header and footers to
include page numbers, date and time stamps, file locations,
tab names, etc. Assign the macro to an Icon onthe toolbar
or Quick Access Bar and insetting headers and footers
will be a breeze for the rest of your life.

Print Macros Do you have a template that print frequently
from? If so, insert several macro buttons to print each
report, a group of reports, and even multiple reports and
reporting will be snap in the future.

Delete Data Macro create a macro that visits each cell
and erases that data, resetting the worksheet for use in a
new set of criteria. Assign the macro to a macro
button and will never again have old assumptions
mixed in with your newer template

Copyright Free under CC BY Licence

126

IT & ITES Related Theory for Exercise 2.2.117
COPA - Programming with VBA

User forms and control in Excel VBA
Objectives: At the end of this lesson you shall be able to
• define forms and controls in VBA
• describe the types of excel forms
• describe the properties, methods and events of forms.

Introduction to Forms and Controls

A form is a document designed with a standard structure
and format that makes it easier to enter, organize, and
edit information. Forms contain labels, textboxes, drop
down boxes and command buttons too.

By using forms and the many controls and objects that
you can add to them, you can significantly enhance data
entry on your worksheets and improve the way your
worksheets are displayed.

Types of Excel forms

There are several types of forms that you can create in
Excel: data forms, worksheets that contain Form and
ActiveX controls, and VBA UserForms.

Data form

A data form provides a convenient way to enter or display
one complete row of information in a range or table without
scrolling horizontally. You may find that using a data form
can make data entry easier than moving from column to
column when you have more columns of data than can be
viewed on the screen. Excel can automatically generate a
built-in data form for your range or table.

Worksheet with Form and ActiveX controls

A worksheet can be considered to be a form that enables
you to enter and view data on the grid.

For added flexibility, you can add controls and other drawing
objects to the worksheet, and combine and coordinate
them with worksheet cells. For example, you can use a
list box control to make it easier for a user to select from
a list of items. Or, you can use a spin button control to
make it easier for a user to enter a number.

You can display or view controls and objects alongside
associated text that is independent of row and column
boundaries without changing the layout of a grid or table
of data on your worksheet. Many of these controls can
also be linked to cells on the worksheet and do not require
VBA code to make them work. For example, you might
have a check box that you want to move together with its
underlying cell when the range is sorted. However, if you
have a list box that you want to keep in a specific location
at all times, you probably do not want it to move together
with its underlying cell.

Creating VBA Forms

A VBA form can be created from the code window. To
create a Form in VBA,click on Insert menu in the code
window and then click 'UserForm'. A UserForm1 appears
in the project window.

When you create or add a form, a module is also
automatically created for it. To access the module
associated with a form, you can right-click the form and
click View Code.Double Clicking on the Form or pressing
F7 will also open the Code window. Using Shift F7 will
again switch back to the Design Window.

The design time properties of the Form can be set by right
clicking on the form and selecting 'Properties'. The same
can be achieved by Clicking "F4" or the properties button
on the Form.Controls can be placed on the form from the
ToolBox as per requirement.

In addition, Controls can be added on the Form
programmatically / at run time using the "Add" method.
Similarly the controls can be removed from the form at run
time / programmatically using the "Remove" method. As
an example to add a checkbox control, we can write

Set cb1 = Controls.Add("Forms.CheckBox.1")

Some of the events and methods connected with the form
object are:

Events, Activate, Deactivate, Add Control, Remove Control,
Click, DblClick, Initialize, KeyPress, Resize, Scroll,
Terminate, Zoom etc.

Methods Copy, Paste, Hide, Move, Print Form, Repaint,
Scroll, Show etc .

The code needed to perform various operations on Forms
is given in Table 1.

A sample Form for data entry of students' details, marks
and results is shown in Fig. 1.

Necessary code can be attached to the Command Buttons
and other controls shown. After the user enters the data,
the total is calculated and the result is displayed. The
records can then be stored appropriately.

Copyright Free under CC BY Licence

127

Table 1

Userform VBA Code Action
Application

To Display a UserForm1.Show Displays the UserForm with name UserForm1. This code should be
UserForm inserted in a Standard VBA Module and not in the Code Module of the

UserForm. You can create a button in a worksheet, then right click to
assign macro to this button, and select the macro which shows the
UserForm.

Load a UserForm Load UserForm1 Load statement is useful in case of a complex UserForm that you
into memory but do want to load into memory so that it displays quickly on using the
not display Show method, which otherwise might take a longer time to appear.

Remove a User Unload UserForm1 Note: The Hide method (UserForm1.Hide) does not unload the
Form from memory UserForm from memory. To unload the UserForm from memory, the
/ Close UserForm Unload method should be used.

Unload Me Use the Me keyword in a procedure in the Code Module of the UserForm.

Hide a UserForm UserForm1.Hide Using the Hide method will temporarily hide the UserForm, but will not
close it and it will remain loaded in memory.

Print a UserForm UserForm1.PrintForm The PrintForm method sends the UserForm directly for printing.

Display UserForm UserForm1.Show False If the UserForm is displayed as Modeless, user can continue working
as Modeless in Excel while the UserForm continues to be shown. Omitting the

Boolean argument (False or 0) will display the UserForm as Modal, in
which case user cannot simultaneously work in Excel. By default
UserForm is displayed as Modal.

Close a UserForm Unload UserForm1 The Unload method closes the specified UserForm.

Unload Me The Unload method closes the UserForm within whose Code Module
it resides.

End Use the End statement in the "Close" CommandButton to close the
form. The "End" statement unloads all forms.

Specify UserForm UserForm1.Caption Caption is the text which describes and identifies a UserForm and will
Caption = "Bio Data" display in the header of the Userform.

Set UserForm UserForm1.Height
size = 250 Set Height of the UserForm, in points.

UserForm1.Width
= 350 Set Width of the UserForm, in points.

Set UserForm Position:

Left & Top UserForm1.Left = 30 Distance set is between the form and the Left or Top edge of the
 properties UserForm1.Top = 50 window that contains it, in pixels.

Move method UserForm1.Move Move method includes two arguments which are required - the Left
200, 50 distance and the Top distance, in that order.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.117

Copyright Free under CC BY Licence

128

Necessary code can be attached to the Command Buttons
and other controls shown. After the user enters the data,
the total is calculated and the result is displayed. The
records can then be stored appropriately.

Fig 1

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.117

Copyright Free under CC BY Licence

129

IT & ITES Related Theory for Exercise 2.2.118
COPA - Programming with VBA

Methods and Events in VBA
Objectives: At the end of this lesson you shall be able to
• explain VBA methods and events.

Methods and Events

Methods

A method is an action you perform with an object. A method
can change an object's properties or make the object do
something.

For example painting is a Method, building a new room is
a method in building a new house.

Similarly, if you want to select a range, you need Select
method. If you want to copy a range from one worksheet to
another worksheet you need Copy method to do it.

The following example Copies the data from Range A1 to
B5.

Enter the following code in the Module1 as shown in Fig 1

Sub sbExampleRangeMethods()
Range("A1").Select
Selection.Copy
Range("B5").Select
ActiveSheet.Paste
End Sub

Fig 1

If the above code is executed the content of cell A1 is
copied to Cell B5 as shown in the Fig 2.

Fig 2

Events

An Event is an action initiated either by user action or by
other VBA code. An Event Procedure is a Sub procedure
that you write, according to the specification of the event,
that is called automatically by Excel when an event
occurs. For example, a Worksheet object has an event
named Change. If you have properly programmed the
event procedure for the Change event, Excel will
automatically call that procedure, always named
Worksheet_Change and always in the code module of the
worksheet, whenever the value of any cell on the worksheet
is changed by user input or by other VBA code (but not if
the change in value is a result of a formula calculation).
You can write code in the Worksheet_Change event
procedure to take some action depending on which cell
was changed or based upon the newly changed value.

Enter the following code in the Worksheet_Change event
as shown in Fig 3.

Private Sub Worksheet_Change(ByVal Target
As Range)
MsgBox "Changed"
End Sub

Copyright Free under CC BY Licence

130

Fig 3

Fig 4

When we change content of any Cell the following message
will be displayed as shown in Fig 4.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.118

Copyright Free under CC BY Licence

131

IT & ITES Related Theory for Exercise 2.2.119
COPA - Programming with VBA

Debugging Techniques in VBA
Objectives: At the end of this lesson you shall be able to
• explain about VBA debugging
• explain how to set and clear the Breakpoints
• describe use of immediate window
• explain about watch window.

VBA Debugging

In Excel 2010, VBA’s debugging environment allows the
programmer to momentarily suspend the execution of VBA
code so that the following debug tasks can be done:

1 Check the value of a variable in its current state.

2 Enter VBA code in the Immediate window to view the
results.

3 Execute each line of code one at a time.

4 Continue execution of the code.

5 Halt execution of the code.

These are just some of the tasks that you might perform
in VBA’s debugging environment. (Fig 1)

Fig 1

Breakpoint in VBA

In Excel 2010, a breakpoint is a selected line of code that
once reached, the program will momentarily become
suspended. Once suspended, and to use VBA’s debugging
environment to view the status of program, step through
each successive line of code, continue execution of the
code, or halt execution of the code.

And create as many breakpoints in the code as you want.
Breakpoints are particularly useful when suspend the
program where you suspect a problem/bug exists.

Setting a Breakpoint

First, you need to open the VBA environment. The quickest
way to do this is by pressing Alt+F11 while the Excel
database file is open.
To set a breakpoint, find the line of code where to suspend
your program. Left-click in the grey bar to the left of the
code. A red dot should appear and the line of code should
be highlighted in red.

Clear Breakpoint in VBA

A breakpoint in VBA is indicated by a red dot with a line
of code highlighted in red.

To clear a breakpoint in Excel 2010, left-click on the red
dot next to the line of code that has the breakpoint.
(Fig 2)

Fig 2

In this example, we want to clear the breakpoint at the
following line of code:

LChar = Mid(pValue, LPos, 1) (Fig 3)

Now, the breakpoint is cleared and the line of code should
look normal again. (Fig 4)

Copyright Free under CC BY Licence

132

Fig 3

Fig 4

In this example, we’ve created a breakpoint at the following
line of code:

LChar = Mid(pValue, LPos, 1)

Now, the breakpoint is cleared and the line of code should
look normal again

Clearing all Breakpoints

If user use as many breakpoints as you want in Excel
2010, and can save time by clearing all breakpoints in the
VBA code at once.

To clear all breakpoints in the program, select “Clear All
Breakpoints” under the Debug menu. (Fig 5)

This will remove all breakpoints from the VBA code, so
that you don’t have to individually remove each breakpoint,
one by one.

Fig 5

Debug Mode

Now that we know how to set and clear breakpoints in
Excel 2010, let’s take a closer look at the debug mode
in VBA.

In our example, we’ve set our breakpoint and entered our
AlphaNumeric function as a formula in a cell. This will
cause the VBA code to execute. (Fig 6)

When the breakpoint is reached, Excel will display the
Microsoft Visual Basic window and highlight the line (in
yellow) where the code has been suspended. (Fig 7)

Fig 6

Fig 7

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.119

Copyright Free under CC BY Licence

133

Now we are in debug mode in our Excel spreadsheet.
Now we can do any of the following:

1 Check the value of a variable in its current state.

2 Enter VBA code in the Immediate window to view the
results.

3 Execute each line of code one at a time.

4 Continue execution of the code.

5 Halt execution of the code.

Using the Immediate Window

In Excel 2010, the Immediate window can be used to debug
your program by allowing you to enter and run VBA code
in the context of the suspended program. (Fig 8)

Fig 8

We’ve found the Immediate window to be the most help
when we need to find out the value of a variable, expression,
or object at a certain point in the program. This can be
done using the print command.

For example, if you wanted to check the current value of
the variable called pValue, you could use the print
command as follows: (Fig 9)

Fig 9

In this example, we typed print pValue in the Immediate
window and pressed ENTER.
Print pValue

The Immediate window displayed the result in the next
line. In this case, the print pValue command returned 123
Main St.

You can also type more complicated expressions in the
Immediate window. (Remember to press ENTER.) For
example: (Fig 10)

Fig 10

In this example, we typed print Mid(pValue, LPos, 1) in
the Immediate window and pressed ENTER.
print Mid(pValue, LPos, 1)

The Immediate window displayed the result of 1 in the
next line.

The Immediate window can be used to run other kinds of
VBA code, but bear in mind that the Immediate window
can only be used when debugging so any code that you
run is for debugging purposes only. The code entered in
the Immediate window does not get saved and added to
the existing VBA code

Adding a Watch Expression
The Watch Window displays the value of a watched
expression in its current state. This can be extremely
useful when debugging VBA code. Let’s explore how to
add an expression to the Watch Window.

To add a Watch expression, select Add Watch under the
Debug menu. (Fig 11)

When the Add Watch window appears, enter the
expression to watch and click the OK button when you
are done. (Fig 12)

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.119

Copyright Free under CC BY Licence

134

Fig 11 Fig 12

In this example, we’ve entered the following watch
expression in the Expression field:
Mid(pValue, LPos, 1)

Next, we’ve selected AlphaNumeric as the Procedure
and Module1 as the Module when setting up the Context
for the watched expression.

Finally, we’ve selected Watch Expression as the Watch
Type but there are 3 options to choose from:

Watch Type Description

Watch Expression To display the value of the watched expression in its current state

Break When Value Is True To stop the execution of the code when the value of the watched expression is
True

Break When Value Changes To stop the execution of the code when the value of the watched expression
changes

When return to the VBA window, the Watch Window will
automatically appear if it was previously hidden. Within
the Watch Window, all of the watched expressions should
be listed including the one that we just added. (Fig 13)

Fig 13

As you can see, the expression Mid(pValue, LPos, 1)
now appears in the Watch Window with a value of “1”.
Adding a watch is a great way to keep track of variables or
expressions of interest when debugging the VBA code.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.119

Copyright Free under CC BY Licence

135

IT & ITES Related Theory for Exercise 2.2.120
COPA - Programming with VBA

Object Oriented Programming concepts, Concepts of classes, Objects,
properties and Methods
Objectives: At the end of this lesson you shall be able to
• explain Class and objects and its features
• explain VBA Class modules Versus VBA normal modules
• list out parts of a class module and its properties
• explain class module events.

Introduction

VBA Class Modules allow the user to create their own
objects. In languages such as C# and Java, classes are
used to create objects. Class Modules are the VBA
equivalent of these classes. The major difference is that
VBA Class Modules have a very limited type of
Inheritance* compared to classes in the other
languages. In VBA, Inheritance works in a similar way
to Interfaces in C#\Java.

In VBA we have built-in objects such as the Collection,
Workbook, Worksheet and so on. The purpose of VBA
Class Modules is to allow us to custom build our own
objects.

Let’s start this post by looking at why we use objects in
the first place.

Inheritance is using an existing class to build a new
class.
Interfaces are a form of Inheritance that forces a class
to implement specifics procedures or properties.

Objects

Using objects allows us to build our applications like we
are using building blocks.

The idea is that the code of each object is self-
contained. It is completely independent of any other
code in our application.

Advantages of Using Objects

Treating parts of our code as blocks provide us with a lot
of advantages

1 It allows us to build an application one block at a time.

2 It is much easier to test individual parts of an
application.

3 Updating code won’t cause problems in other parts of
the application.

4 It is easy to add objects between applications.

Disadvantages of Using Objects

With most things in life there are pros and cons. Using
VBA class modules is no different. The following are the
disadvantages of using class module to create objects
1 It takes more time initially to build applications*.

2 It is not always easy to clearly define what an object
is.

3 People new to classes and objects can find them
difficult to understand at first.

 If create an application using objects it will take longer to
create it initially have to spend more time planning and
designing it. However, in the long run it will save a huge
amount of time. The code will be easier to manage, update
and reuse.

Creating a Simple Class Module

Let’s look at a very simple example of creating a class
module and using it in our code.

To create a class module we right-click in the Project
window and then select Insert and Class Module. (Fig 1)

Adding a Class Module

Our new class is called Class1. We can change the name
in the Properties window.

Fig 1

Copyright Free under CC BY Licence

136

Let’s change the name of the class module to
clsCustomer. Then we will add a variable to the class
module like this

Public Name AsString (Fig 2)

Fig 2

We can use now use this class module in any
module(standard or class) in our workbook. For example
‘ Create the object from the class module

Dim oCustomer AsNew clsCustomer

‘ Set the customer name

oCustomer.Name = “John”

‘ Print the name to the Immediate Window(Ctrl + G)

Debug.Print oCustomer.Name

Class Module versus Objects

People who are new to using classes and VBA class
modules, often get confused between what is a class and
what is an object.

Let’s look at a real-world example. Think of a mass-
produced item like a coffee mug. A design of the mug is
created first. Then, thousands of coffee mugs are created
from this design.

This is similar to how class modules and objects work.

The class module can be thought of as the design.

The object can be thought of as the item that is created
from the design.

The New keyword in VBA is what we use to create an
object from a class module. For example

‘ Creating objects using new

Dim oItem AsNew Class1

Dim oCustomer1 AsNewclsCustomer

Dim coll AsNew Collection

Note: We don’t use New with items such as
Workbooks and Worksheets. See When New
is not required for more information.

VBA Class Modules Versus VBA Normal Modules

Writing code in a class module is almost the same as
writing code in a normal module. We can use the same
code we use in normal modules. It’s how this code is
used which is very different.

Let’s look at the two main differences between the class
and normal module. These often cause confusion among
new users.
Difference 1 – How the modules are used

If want to use a sub/function etc. from a class module
must create the object first.

For example, imagine we have two identical
PrintCustomer subs. One is in a class module and one
is in a normal module…

‘ CLASS MODULE CODE - clsCustomer

Public Sub PrintCustomer()

Debug.Print “Sample Output”

End Sub

‘ NORMAL MODULE CODE

Public Sub PrintCustomer()

Debug.Print “Sample Output”

End Sub

You will note the code for both is exactly the same.

To use the PrintCustomer sub from the class module,
you must first create an object of that type
‘ Other Module

Sub UseCustomer()

Dim oCust AsNew clsCustomer

oCust.PrintCustomer

EndSub

To use Print Customer from the normal module you can
call it directly

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

137

‘ Other Module

Sub Use Customer()

Print Customer

End Sub

Difference 2 – Number of copies

Whencreate a variable in a normal module there is only
one copy of it. For a class module, there is one copy of
the variable for each object you create.

For example, imagine we create a variable Student Name
in both a class and normal module..
‘ NORMAL MODULE

Public StudentName As String

‘ CLASS MODULE

Public Studen tName As String

For the normal module variable there will only be one copy
of this variable in our application.

StudentName = “Ram”

For the class module a new copy of the variable Student
Name is created each time a new object is created.

Dim student1 As New clsStudent

Dim student 2 As New clsStudent

student1.Student Name = “Bill”

student2.Student Name = “Ted”

When fully understand VBA class modules, these
differences will seem obvious.

The Parts of a Class Module

There are four different items in a class module. These are
1 Methods – functions/subs.

2 Member variables – variables.

3 Properties– types of functions/subs that behave like
variables.

4 Events – subs that are triggered by an event.

And can see they are all either functions, subs or variables.

Let’s have a quick look at some examples before we deal
with them in turn
‘ CLASS MODULE CODE

‘ Member variable

Private dBalance As Double

‘ Properties

Property Get Balance () AsDouble

Balance = dBalance

EndProperty

Property Let Balance(dValueAs Double)

dBalance = dValue

End Property

‘ Event - triggered when class created

Private Sub Class_Initialize()

dBalance = 100

EndSub

‘ Methods

Public Sub Withdraw (dAmountAs Double)

dBalance = dBalance - dAmount

End Sub

Public Sub Deposit (dAmountAs Double)

dBalance = dBalance + dAmount

EndSub

Now that we have seen examples, let’s look at each of
these in turn.

Class Module Methods

Methods refer to the procedures of the class. In VBA
procedures are subs and functions. Like member variables
they can be Public or Private.

Let’s look at an example

‘ CLASS MODULE CODE

‘ Class name: clsSimple

‘ Public procedures can be called from outside the object

Public Sub PrintText (sTextAs String)

Debug.PrintsText

EndSub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

138

Public Function Calculate (dAmountAs Double) As
Double

Calculate = dAmount - GetDeduction

End Function

‘ private procedures can only be called from within the
Class Module

Private Function GetDeduction () As Double

GetDeduction = 2.78

EndFunction

We can use the clsSimple class module like this

Sub Class Members ()

Dim oSimple As New clsSimple

oSimple.PrintText “Hello”

Dim dTotal As Double

dTotal = oSimple.Calculate(22.44)

Debug.Print dTotal

EndSub

Class Module Member Variables

The member variable is very similar to the normal variable
we use in VBA. The difference is we use Public or Private
instead of Dim.

‘ CLASS MODULE CODE

Private Balance AsDouble

Public AccountID As String

Note: Dim and Private do exactly the same
thing but the convention is to use Dim in sub/
functions and to use Private outside sub/
functions.

The Public keyword means the variable can be accessed
from outside the class module. For example

Dim oAccount AsNew clsAccount

‘ Valid - AccountID is public

oAccount.AccountID = “499789”

‘ Error - Balance is private

oAccount.Balance = 678.90

 In the above example we cannot access Balance because
it is declared as Private. We can only use a Private
variable within the class module. We can use in a function/
sub in the class module e.g.

‘ CLASS MODULE CODE

Private Balance As Double

Public SubSetBalance()

 Balance = 100

Debug.Print Balance

End Sub

It is considered poor practice to have public member
variables. This is because the code allowing outside the
object to interfere with how the class works. The purpose
of the using classes is so that hide what is happening
from the caller.

To avoid the user directly talking to the member variables
we use Properties.

Class Module Properties

1 Get – returns an object or value from the class

2 Let – sets a value in the class

3 Set – sets an object in the class

Format of VBA Property

The normal format for the properties are as follows:

Public Property Get () AsType

End Property

Public Property Let (varnameAsType)

End Property

Public PropertySet (varnameAsType)

EndProperty

We have seen already that the Property is simply a type
of sub. The purpose of the Property is to allow the caller to
get and set values.

Use of Properties

Imagine we have a class that maintains a list of Countries.
We could store the list as an array

‘ Use array to store countries

Public arrCountries As Variant

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

139

‘ Set size of array when class is initialized

Private Sub Class_Initialize()

ReDim arrCountries (1 To 1000)

End Sub

When the user wants to get the number of countries in the
list they could do this

‘ NORMAL MODULE CODE

Dim oCountry As New clsCountry

‘ Get the number of items

NumCountries = UBound(oCountry.arrCountries) + 1

There are two major problems with the above code

1 To get the number of countries you need to know how
the list is stored e.g. Array.

2 If we change the Array to a Collection, we need to
change all code that reference the array directly.

To solve these problems we can create a function to return
the number of countries

‘ CLASS MODULE CODE - clsCountryList

‘ Array

Private arrCountries () As String

Public Function Count () AsLong

 Count = UBound(arrCountries) + 1

End Function

We then use it like this

‘ MODULE CODE

Dim oCountries As New clsCountries

Debug.Print “Number of countries is “ &oCountries.Count

This code solves the two problems we listed above. We
can change our Array to a Collection and the caller code
will still work e.g.

‘ CLASS MODULE CODE

‘ Collection

Private collCountries() As Collection

Public FunctionCount() AsLong

 Count = collCountries.Count

End Function

The caller is oblivious to how the countries are stored. All
the caller needs to know is that the Count function will
return the number of countries.

As we have just seen, a sub or function provides a solution
to the above problems. However, using a Property can
provide a more elegant solution.

Using a Property instead of a Function/Sub

Instead of the creating a Count Function we can create a
Count Property. As you can see below they are very similar

‘ Replace this

Public Function Count() As Long

 Count = UBound(arrCountries) + 1

End Function

‘ With this

Property Get Count () As Long

 Count = UBound(arrCountries) + 1

End Function

In this scenario, there is not a lot of difference between
using the Property and using a function. However, there
are differences. We normally create a Get and Let property
like this

‘ CLASS MODULE CODE - clsAccount

Privated TotalCost As Double

Property Get TotalCost () As Long

Total Cost= dTotalCost

End Property

Property Let Total Cost (dValue As Long)

dTotal Cost = dValue

End Property

Using Let allows us to treat the property like a variable.
So we can do this

oAccount.Total Cost = 6

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

140

The second difference is that using Let and Get allows
us to use the same name when referencing the Get or
Let property. So we can use the property like a variable.
This is the purpose of using Properties over a sub and
function.

oAccount.TotalCost = 6

dValue = oAccount.TotalCost

If we used a function and a sub then we cannot get the
behaviour of a variable. Instead we have to call two different
procedures e.g.

oAccount.SetTotalCost 6

dValue = oAccount.GetTotalCost

You can also see that when we used Let we can assigned
the value like a variable. When we use Set Total Cost,
we had to pass it as a parameter.

The Property in a Nutshell

1 The Property hides the details of the implementation
from the caller.

2 The Property allows us to provide the same behaviour
as a variable.

Types of VBA Property

There are three types of Properties. We have seen Get
and Let already. The one we haven’t looked at is Set.

Set is similar to Let but it is used for an object(see
Assigning VBA Objects for more detail about this).

Originally in Visual Basic, the Let keyword was used to
assign a variable. In fact, we can still use it if we like.

‘ These line are equivalent

Let a = 7

a = 7

So we use Let to assign a value to a variable and we use
Set to assign an object to an object variable

‘ Using Let

Dim a As Long

Let a = 7

‘ Using Set

Dim coll1 As Collection, coll2 As Collection

Set coll1 = New Collection

Set coll2 = coll1

• Let is used to assign a value to a basic variable type.

• Set is used to assign an object to an object variable.

In the following example, we use Get and Let properties
for a string variable

‘ CLASS MODULE CODE

‘ SET/LET PROPERTIES for a variable

Private m_sName As String

‘ Get/Let Properties

Property Get Name() As String

 Name = m_sName

End Property

Property Let Name (sNameAs String)

m_sName = sName

End Property

We can then use the Name properties like this

Sub Test Let Set()

Dim sName As String

Dim coll As New Collection

Dim oCurrency As New clsCurrency

‘ Let Property

oCurrency.Name = “USD”

‘ Get Property

sName = oCurrency.Name

End Sub

In the next example, we use Get and Set properties for an
object variable

‘ CLASS MODULE CODE

Private m_collPrices As Collection

‘ Get/Set Properties

Property Get Prices() As Collection

Set Prices = m_collPrices

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

141

End Property

Property Set Prices (collPricesAs Collection)

Set m_collPrices = collPrices

End Property

We can then use the properties like this

Sub Test Let Set ()

Dim coll1 As New Collection

Dim oCurrency As New cls Currency

‘ Set Property

Set oCurrency.Prices = coll1

‘ Get Property

Dim coll2 As Collection

Set Coll2 = oCurrency.Prices

EndSub

We use the Get property to return the values for both items.
Notice that even though we use the Get Property to return
the Collection, we still need to use the Set keyword to
assign it.

Class Module Events

A class module has two events
1 Initialize – occurs when a new object of the class is

created.

2 Terminate – occurrs when the class object is deleted.

In Object Oriented languages like C++, these events are
referred to as the Constructor and the Destructor. In most
languages, you can pass parameters to a constructor but
in VBA you cannot. We can use a Class Factory to get
around this issue as we will see below.

Initialize

Let’s create a very simple class module called clsSimple
with Initialize and Terminate events

‘ CLASS MODULE CODE

Private SubClass_Initialize()

Msg Box “Class is being initialized”

End Sub

Private SubClass_Terminate()

Msg Box “Class is being terminated”

End Sub

Public Sub Print Hello ()

Debug.Print “Hello”

End Sub

In the following example, we use Dim and New to create
the object.

In this case, oSimple is not created until we reference it
for the first time e.g.

Sub Class Event sInit2 ()

Dim oSimple As New clsSimple

‘ Initialize occurs here

oSimple.PrintHello

EndSub

When we use Set and New together the behaviour is
different. In this case the object is created when Set is
used e.g.

Sub Class Events Init()

Dim oSimple As clsSimple

‘ Initialize occurs here

Set oSimple = New clsSimple

oSimple.PrintHello

End Sub

Note: For more information about the different
between using New with Dim and using New
with Set see Subtle Differences of Dim Versus
Set

As said earlier, you cannot pass a parameter to Initialize.
If you need to do this you need a function to create the
object first

‘ CLASS MODULE - clsSimple

Public Sub Init (Price As Double)

EndSub

‘ NORMAL MODULE

PublicSubTest()

‘ Use CreateSimpleObject function

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

142

Dim oSimple As clsSimple

Set oSimple = CreateSimpleObject(199.99)

End Sub

Public Function CreateSimpleObject(Price As Double)
As clsSimple

Dim oSimple As New clsSimple

oSimple.Init Price

Set CreateSimpleObject = oSimple

End Function

 We will expand on this CreateSimpleObject in Example
2 to create a Class Factory.

Terminate

The Terminate event occurs when the class is deleted.
This happens when we set it to Nothing

Sub Class EventsTerm ()

Dim oSimple As clsSimple

Set oSimple = NewclsSimple

‘ Terminate occurs here

Set oSimple = Nothing

End Sub

If we don’t set the object to Nothing then VBA will
automatically delete it when it goes out of scope.

What this means is that if we create an object in a
procedure, when that procedure ends VBA will delete any
objects that were created.

Sub Class EventsTerm2()

Dim oSimple As New clsSimple

‘ Initialize occurs here

oSimple.PrintHello

‘ oSimple is deleted when we exit this Sub calling Terminate

EndSub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

