
105

IT & ITES Related Theory for Exercise 2.2.110A & 2.2.110B
COPA - Programming with VBA

Looping statements in VBA
Objectives: At the end of this lesson you shall be able to
• describe the “for” loops in VBA
• describe the “do” loops in VBA
• explain the use of the “exit” statement in VBA loops
• write appropriate code to perform repetitive tasks.

Introduction

There may be many situations where you need to perform
a task repeatedly / a certain number of times. In such
cases the code for the task is placed inside a loop and
the program iterates or repeats through the loop a certain
number of times ie. till a certain condition is met. Some
examples of such repetitive tasks are:

a Printing a text or number n number of times.

b Generating a sequence or series of numbers.

c Generating a table of certain calculations.

d Searching / Re arranging a set of numbers etc.

VBA provides the following types of loops to handle looping
requirements (Refer Table 1)

Table 1

Loop Type Description

for next loop Execute a sequence of statements
multiple times and abbreviates the
code that manages the loop
variable.

do....until loop Repeats a statement or group of
statements until a condition is met.

do….while loop Repeats a statement or group of
statements as long as the condition
is true.

The For Loop

The For ... next loop sets a variable to a specified set of
values, and for each value, runs the VBA code inside the
loop. For Ex.

For n = 1 To 10

debug.print n

Next n

In this example, the initial value of n is set to 1, and the
loop code, ie. printing the value of n is performed.The value
of n is set to the next value which is by default an increment
of 1. Thus this loop is executed 10 times and would print
the numbers 1 to 10. The for statement in the above code

is the same as For n = 1 To 10 Step 1 since the default
increment is 1

The same code will print numbers from 10 to 1 if the step
is changed to a negative value as shown below.

For n = 10 To 1 Step -1

debug. print n

Next n

Similarly, the following Ex. would add all the numbers from
1 to 10 and print the sum.

Dim n, sum as integer

Sum=0

For n = 1 To 10

sum=sum + n

debug. print sum

Next n

The For Each Loop

The For Each loop is similar to the For ... Next loop but,
instead of looping through a set of values for a variable, it
loops through every object within a set of objects. The
following example would print the names of all the
worksheets.

Dim ws As Worksheet

For each ws in Worksheets

debug. print ws.name

Next ws

The Exit For Statement

If you need to end the For loop before the end condition is
reached or met, simply use the END FOR in conjunction
with the IF statement. In the example given below, we exit
the for loop prematurely and before the end condition is

Copyright Free under CC BY Licence

106

met. The for example given below, the loop exits when n
reaches a value of 5.

For n = 0 To 10

debug.print n

If n=5 Then Exit For

Next n

The Do ….Until Loop repeats a statement or group of
statements until a condition is met.

There are 2 ways a Do Until loop can be used in Excel
VBA Macro code.

a Test the condition before executing the code in the
loop

b Execute the code in the loop and then test for the
condition.

Do Until….. Loop

In this example, the value of n is tested before going into
the loop.

If the condition n=10 is not met right at the beginning itself,
the code inside the loop is not executed at all. The control
then jumps to the statements appearing after the Loop
statement.

Do Until n=10

Debug.print n

n=n+1

Loop

Do ….. Loop Until

In this example, the code in the loop is executed at least
once before testing the condition. If the condition is true,
the looping stops, else the loop is executed again.

Do

Debug. print n

n=n+1

Loop Until n=10

The Do While … Loop repeats a statement or group of
statements as long as the condition is true.

Like the Do until loop, a Do While loop can be also be
used in two ways.

a Test the condition before executing the code in the
loop

b Execute the code in the loop and then test for the
condition.

Do While ….Loop

In this example, the condition ie. num<10 is checked
before entering the loop. Only if the condition is met, the
code in the loop is executed, otherwise it is skipped
entirely. This example will print a table as shown in Fig 1.

Dim num As Integer

Debug.Print "number"; Spc(2); "square"

Do While num < 10

num = num + 1

Debug.Print num; Spc(5); num * num

Loop

Do…. Loop While

In a Do…. Loop While , a set of statements in the loop are
executed once, then the condition is checked. The code
in the loop is executed only if the condition is met. (Refer
Fig 2 for the flow chart)

In this example, the value 1 is placed in cell (1,1). The row
value is incremented each time the loop code is executed.
The incremented value is placed in the cell (row,1). The
loop is executed as long as the row value is less than 10
after which the iterations stop. The condition checking is
done after executing the loop code at least once. (Fig 2)

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.110A & 2.2.110B

Fig 1

Copyright Free under CC BY Licence

107

Dim row As Integer

row = 0

Do

row = row + 1

Cells(row, 1) = row

Loop While row < 10

The While ….. Wend loop

The While ….. Wend loop executes a series of statements
as long as a given condition is True.

In this example the condition checking is done at the
beginning of the loop. This code prints hello 5 times and
then prints the value of the counter, ie. 5 at the end of the
program.

Dim Counter

Counter = 0

While Counter < 5

Counter = Counter + 1

Debug.Print "hello"

Wend

Debug.Print Counter

The Exit Statement

The Exit Statement exits a procedure or block and transfers
control immediately to the statement following the
procedure call or the block definition. It may be in the form
of Exit Do, Exit For, Exit While, Exit Select etc. depending
on where it is being used. An example of an Exit statement
is as follows:

Do While True

Count = Count + 1

Debug.Print Count

If Count = 5 Then

Debug.Print "stop at 5"

Exit Do

End If

Loop

In this example, the loop condition stops the loop when
count=5.

Previous code

Loop code

No

Yes

Next code to

Fig 2

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.110A & 2.2.110B

Copyright Free under CC BY Licence

108

IT & ITES Related Theory for Exercise 2.2.111A - 2.2.111C
COPA - Programming with VBA

Arrays in VBA
Objectives: At the end of this lesson you shall be able to
• describe and declare an array in VBA
• differentiate between static and dynamic arrays
• declare, populate and read a multidimensional array
• describe the redim and preserve statements in VBA.

Introduction

An Array is a group of variables of the same data type and
with the same name. If we have a list of items which are of
similar type to deal with, we need to declare an array of
variables instead of using a variable for each item. For
example, if we need to enter ten names, instead of
declaring ten different variables for each name, we need to
declare only one array holding all the names. The individual
element or item in the array is identified by its index or
subscript.

When arrays are used, data is stored in an organized
way. Apart from this working with the data is easy and
faster when iterations are done using the Loop statements
like For… Next etc. on the Arrays. The following example
declares an array variable to hold ten students in a school.

Dim students(10) As Integer

The array "students" in the preceding example contains
ten elements. The indices of the elements range from 0
through 9 by default. The variables in the Array are now
identified as students(0), students(1) etc.indicating the first
element and second element etc.respectively.

Types of Arrays :

1 Static Arrays

2 Dynamic Arrays

Static array

A static array is an array that is sized in the Dim statement
that declares the array. E.g.,

Dim Students(10) as String

Dim StaticArray(1 To 10) As Long

You cannot change the size or data type of a static array.
When you erase a static array, no memory is freed. Erase
simply sets all the elements to their default value (0,
vbNullString, Empty, or Nothing, depending on the data
type of the array).

Declaring an Array

You declare an array variable using the Dim statement.

Dim StudentName(3) As String

Arrays are also declared in another method where the
type or the variable name with one or more pairs of
parentheses is added to indicate that it will hold an array.
After you declare the array, you can define its size by
using the ReDim Statement.

The following example declares a one-dimensional array
variable and also specifies the dimensions of the array by
using the ReDim Statement.

Dim arr As Integer()

ReDim arr(10)

The following example declares a multidimensional array
variable by placing commas inside the parentheses to
separate the dimensions.

Dim arrayName (num1, num2) as datatype

To declare a jagged array variable, add a pair of
parentheses after the variable name for each level of nested
array.

Dim arr()()() As integer

 In VBA arrays you can specify any value for the lower and
upper bounds of the array. Element 0 need not be the first
element in the array. For example, the following is perfectly
legal code (as long as the lower bound is less than or
equal to the upper bound -- an error is generated if the
lower bound is greater the upper bound).

If you don't explicitly declare the lower bound of an array,
the lower bound will be assumed to be either 0 or 1,
depending on value of the Option Base statement, if
present. If Option Base is not present in the module, 0 is
assumed. For example, the code

Dim Arr(10) As Long

declares an array of either 10 or 11 elements. The
declaration does not specify the number of elements in
the array. Instead, it specifies the upper bound of the array.
If your module does not contain an "Option Base"
statement, the lower bound is assumed to be zero,
and the declaration above is the same as :
Dim Arr(0 To 10) As Long

Copyright Free under CC BY Licence

109

If you have an Option Base statement of 0 or 1, the lower
bound of the array is set to that value.

Thus, the code : Dim Arr(10) As Long is the equivalent of
either Dim Arr(0 To 10) As Long or Dim Arr(1 To 10) As
Long, depending on the value of the Option Base.

It is a good programming practice to specify both the lower
and upper bounds of the array to avoid bugs when copying
and pasting code between modules or elsewhere.

Storing values in an array

Arrays can be populated in the following ways

1 Marks(0)=55

Marks(1)=67

Marks(2)=55

Marks(3)=67

Marks(4)=74

2 Dim marks As Integer() = {55, 67, 87, 48, 90, 74}

3 Dim marks = New Integer() {1, 2, 4, 8}

4 Dim doubles = {1.5, 2, 9.9, 18}

You can explicitly specify the type of the elements in an
array that's created by using an array literal. In this case,
the values in the array literal must widen to the type of the
elements of the array. The following code example creates
an array of type Double from a list of integers: Dim marks
As Double() = {55, 67, 87, 48, 90, 74}

Iterating through an Array

Loop statements like for… next, Do …while etc. can be
used with arrays to retrieve their values.An example of
such a code is shown below.

Sub array_test()

Dim arr(5) As Integer

Dim n As Integer

arr(0) = 89

arr(1) = 56

arr(2) = 78

arr(3) = 45

arr(4) = 99

For n = LBound(arr) To UBound(arr) - 1

Debug.Print arr(n)

Next

End Sub

Here LBound() and UBound() functions return the Lower
and Upper Bounds of the Array.

Multi dimensional Arrays

Multi dimensional arrays have more than one row or one
column.

For ex.Dim MyArray(5, 4) As Integer

Dim MyArray(1 To 5, 1 To 6) As Integer

In the following ex. we will define an array with 3 elements
each in two rows

Sub array_test()

Sub array_test()

Dim m, n As Integer

Dim arr(2, 4) As String

arr(0, 0) = "printer"

arr(0, 1) = "scanner"

arr(0, 2) = "mouse"

arr(0, 3) = "monitor"

arr(1, 0) = "usb"

arr(1, 1) = "ps2"

arr(1, 2) = "firewire"

arr(1, 3) = "serial"

For m = 0 To 2

 For n = 0 To 3

 Debug.Print arr(m, n); Spc(2);

 Next n

 Debug.Print

Next m

End Sub

Dynamic Arrays

A dynamic array is an array that is not sized in the Dim
statement. Instead, it is sized with the ReDim statement.
Dynamic array variables are useful when we don't know in
advance how many elements need to be stored in the
array or when we need to change the array dimensions at
a later stage.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 2.2.111A - 2.2.111C

Copyright Free under CC BY Licence

110

E.g. : Dim DynamicArray() As Long

ReDim DynamicArray(1 To 10)

If an array is sized with the ReDim statement, the array is
said to be allocated(either static array or a dynamic
array).Static arrays are always allocated and never
empty.You can change the size of a dynamic array, but
not the data type. When you Erase a dynamic array, the
memory allocated to the array is released. You must
ReDim the array in order to use it after it has been Erased.

If a dynamic array has not yet been sized with the ReDim
statement, or has been deallocated with the Erase
statement, the array is said to be empty or unallocated.
Static arrays are never unallocated or empty.

ReDim Statement:

You may declare a dynamic variable with empty
parentheses ie. leave the index dimensions blank. You
can thereafter size or resize the dynamic array that has
already been declared, by using the ReDim statement. To
resize an array, it is necessary to provide the upper bound,
while the lower bound is optional. If you do not mention
the lower bound, it is determined by the Option Base
setting for the module, which by default is 0. You can
specify Option Base 1 in the Declarations section of the
module and then index will start from 1. This will mean
that the respective index values of an array with 3 elements
will be 1, 2 and 3. Not entering Option Base 1 will mean
index values of 0, 1 and 2.

The following example declares an array called A1 as a
dynamic array. The array's size is not set and then it is
resized to 3 elements (by specifying Option Base 1)

Sub arr_test()

'declare a dynamic array

Dim A() As String

ReDim A(3) As String

A(1) = "COPA"

A(2) = "DTPO"

A(3) = "MASE"

debug.print A(1) & " , " & A(2) & " , " & A(3)

End Sub

When you use the ReDim keyword, you erase any existing
data currently stored in the array.

For ex. add another element to the array mentioned in
the example above using the redim statement as follows
and assign a value to it.

ReDim A(4) As String

A(4) = "CHNM"

Now when the array values are displayed again, the earlier
values will all be blank, since they are erased by the redim
statement. The example below shows this:

Sub arr_test()

'declare a dynamic array

Dim A() As String

ReDim A(3) As String

A(1) = "COPA"

A(2) = "DTPO"

A(3) = "MASE"

ReDim A(4) As String

A(4) = "CHNM"

Debug.Print A(1) & " , " & A(2) & " , " & A(3) & "," & A(4)

End Sub

The result of this program will be , , ,CHNM

To resize the array without losing the existing data, you
should use " Preserve " along with Redim. For ex. ReDim
Preserve A(4) As String.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 2.2.111A - 2.2.111C

Copyright Free under CC BY Licence

111

IT & ITES Related Theory for Exercise 2.2.112
COPA - Programming with VBA

String manipulation in VBA
Objectives: At the end of this lesson you shall be able to
• describe the string concatenation functions in VBA
• describe the string conversion functions in VBA
• describe the string extraction functions in VBA
• describe the string formatting functions in VBA.

Introduction

A string, in VBA, is a type of data variable which can
consist of text, numerical values, date and time and
alphanumeric characters. Strings are a frequently used to
store all kinds of data and are important part of VBA
programs. To declare a variable for it, you can use either
String or the Variant data types.

String Manipulation

VBA has a robust set of functions for string handling. The
following are some examples of where you might use string
functions:

• Checking to see whether a string is contained another
string

• Parsing out a portion of a string

• Replacing parts of a string with another value

• Finding the length of the string etc.

String Concatenation

String concatenation or joining two or more strings can be
done by the "+" Operator

Example : Dim A, B, C As String

A = "www"

B = " and"

C = " the Internet"

Debug.Print A + B + C

This will print "www and the Internet"

If it is required to join two or more different data types
variable, then the "&" operator can be used.

Example : Dim person As String, pay As Integer

person = "Jaya"

pay = 25000

Debug.Print "The payment for "& person & " is " & pay

This will print: The payment for Jaya is 25000

Len() function

Returns an integer containing either the number of
characters in a string or the nominal number of bytes
required to store a variable.

Syntax : Len (String)

Example : 1

Dim str As String

str = "Computer operator and programming assistant"

Debug.Print "The length of the string is "& Len(str)

This will print : The length of the string is 43

Example : 2

Dim p, q As Integer, r As Double, dob As Date

p = Sqr(25)

q = 3333

r = 45.6789

dob = #1/1/1990#

Debug.Print "Size of p Is : " & Len(p)

Debug.Print "Size of q Is : " & Len(q)

Debug.Print "Size of r Is : " & Len(r)

Debug.Print "Size of dob Is : " & Len(dob)

Thiswill print : Size of p Is : 1

Size of q Is : 2

Size of r Is : 8

Size of dob Is : 8

Copyright Free under CC BY Licence

112

Left()

Returns a string containing a specified number of
characters from the left side of a string.

Syntax: Left(String ,Int)

Right()

Returns a string containing a specified number of
characters from the right side of a string.

Syntax: Right(String, Int)

Mid()

Returns a string that contains characters from a specified
string.

Syntax:Mid(String, Int, Int)

Returns a string that contains all the characters starting
from a specified position in a string

Syntax: Mid(String, Int, Int)

Returns a string that contains a specified number of
characters starting from a specified position in a
string.Examples are :

1 Dim s AsString

s =" Indiana Jones"

debug.print Left(s)

This will print : India

2 Dim s AsString

s =" FUNDAMENTALLY"

debug.print right(s, 5)

This will print : TALLY

3 Dim s AsString

s =" wholehearted"

debug.print mid(s, 6)

This will print : hearted

4 Dim s AsString

s =" wholehearted"

debug.print mid(s, 6,4)

This will print : hear

Ltrim()

Returns a string containing a copy of a specified string
with no leading spaces (LTrim)

Syntax :LTrim(String)

RTrim()

Returns a string containing a copy of a specified string
with no trailing spaces.

Syntax :RTrim(String)

Trim()

Returns a string containing a copy of a specified string
with no leading or trailing spaces.

Syntax : Trim(String)

Examples: Dim A as String

A = " Adjustment "

Debug.Print "For everyone" <rim(A) & "is a must"

Debug.Print "For everyone"; RTrim(A) & "is a must"

Debug.Print "For everyone"; Trim(A) & "is a must"

This will print : For everyoneAdjustment is a must

For everyone Adjustmentis a must

For everyone Adjustmentis a must

Instr()

Returns an integer specifying the start position of the first
occurrence of one string within another.

Syntax: InStr([start,]string1, string2[, compare])

Example:

A = "hairdresser"

B = "dress"

Debug.Print "The second string starts at position no. "
&InStr(1, A, B) "

This will print : The second string starts at position no. 5

Replacing Strings

The Replace() function replaces a sequence of characters
in a string with another set of characters.

Replace(source_string, find_string, replacement_string).

Eample: Debug.Print Replace("majordrawback",
"drawback", "advantage")

Debug.Print Replace("majority", "aj", "in", 1)

Debug.Print Replace("think and think", "i", "a", 1, 1)

This will print : major advantage

minority

thank and think

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.112

Copyright Free under CC BY Licence

113

Val()

The VAL() function accepts a string as input and returns
the numbers found in that string.The VAL function will stop
reading the string once it encounters the first non-numeric
character. This does not include spaces.

Syntax: Val(String)

Example: Dim s1, s2, s3 As String

s1 = "6 feet 1 inch is his height"

s2 = "5 - 6 kms is the distance to my office from here"

s3 = "011 22222222 is my telephone number"

Debug.Print Val(s1)

Debug.Print Val(s2)

Debug.Print Val(s3)

This will print : 6

 5

 1122222222

The String Conversion Functions

LCase()

Returns a string or character converted to lowercase.

Syntax :LCase(String)

UCase()

Returns a string or character converted to uppercase.

Syntax :UCase(String)

Example:

Dim A, B as String

A="IF YOU FEAR YOU WILL BECOME WEAK"

B = "be a strong person"

Debug.PrintLcase(A)

Debug.PrintUCase(B)

This will print: if you fear you will become weak

BE A STRONG PERSON

Str()

The Str() function converts a number to a string.

CStr()

The CStr() function is used to convert any type of value to
a string.

Syntax: Str(number as variant)

Example:

1 Dim Number As Double

Number = 1450.5

Debug.Print "The string is "&str(Number)

This will print : The string is 1450.5

2 Dim Date_of_birthAs Date

Date_of_birth = #1/1/1990#

Debug.Print CStr(Date_of_birth)

 This will print : 01/01/1990

Asc()

The Asc() function returns an Integer value representing
the ASCII code corresponding to a character or the first
character in a string

Syntax :Asc(String)

Example :Asc("A") will return 65

Chr()

The Chr() Function returns the character associated with
the specified ASCII code.

Syntax :Chr(Integer)

Example :Chr(68) will return the character "D"

Reversing a String

StrReverse(String)

StrReverse() returns a string in which the character order
of a specified string is reversed.

Example: Dim A As String

A = "desserts"

Debug.Print StrReverse(A)

This will print : stressed

Format() function

The format() function returns a Variant (String) containing
an expression formatted according to instructions contained
in a format expression. It can be used to return formatted
dates as well as formatted strings.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.112

Copyright Free under CC BY Licence

114

Syntax(for FormattingStrings) : Format(String, Format)

User-Defined String Formats (Format Function)

You can use any of the following characters to create a
format expression for strings:

Example :Dim x As String

Character Description

@ Character placeholder. Display a character or a space. If the string has a character in the
position where the at symbol (@) appears in the format string, display it; otherwise,
display a space in that position. Placeholders are filled from right to left unless there is an
exclamation point character (!) in the format string.

& Character placeholder. Display a character or nothing. If the string has a character in the
position where the ampersand (&) appears, display it; otherwise, display nothing.
Placeholders are filled from right to left unless there is an exclamation point character (!)
in the format string.

< Force lowercase. Display all characters in lowercase format.

> Force uppercase. Display all characters in uppercase format.

! Force left to right fill of placeholders. The default is to fill placeholders from right to left.

x = "change case"

Debug.Print Format(x, ">")

This will print "CHANGE CASE"

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.112

Copyright Free under CC BY Licence

115

IT & ITES Related Theory for Exercise 2.2.113
COPA - Programming with VBA

Built in Functions in VBA
Objectives: At the end of this lesson you shall be able to
• describe the math functions in VBA
• describe the logical functions in VBA
• describe the date/time functions in VBA
• describe the conversion functions in VBA.

Introduction

VBA has a rich collection of built in functions that perform
a variety of tasks and calculations for you. There are
functions to convert data types, perform calculations on
dates, perform simple to complex mathematics, make
financial calculations, manage text strings, format values,
and retrieve data from tables, among others. Using the
VBA Built in Functions will help coding much easier for
the user. We have already used many built in functions in
our earlier lessons like the msgbox function and many
string manipulation functions just to name a few.

MS Excel: VBA Functions (VBA Formulae) - Category
wise

The commonly used VBA functions in Excel, sorted by
Category are shown here.

String Functions: The string functions were already
discussed in the related theory for Ex. 2.2.09

Math Functions

Table 1 : Lists some of the common Built in Functions in
the Mathematical category.

Table 1

Function Name Description

Abs Returns the absolute value of a number.

Cos Returns the cosine of the specified angle.

Cosh Returns the hyperbolic cosine of the specified angle.

Exp Returns e (the base of natural logarithms) raised to the specified power.

Fix Returns the integer portion of a number.

Format Takes a numeric expression and returns it as a formatted string.

Int Returns the integer portion of a number.

Log Returns the natural (base e) logarithm of a specified number or the logarithm of a specified
number in a specified base.

Rnd Generates a random number (integer value)

Round Returns a Decimal or Double value rounded to the nearest integral value or to a specified
number of fractional digits.

Sign Returns an Integer value indicating the sign of a number.

Sin Returns the sine of the specified angle.

Sqr Returns the square root of a specified number.

Tan Returns the tangent of the specified angle.

Val Accepts a string as input and returns the numbers found in that string.

1 Dim a, b as integer

a=81

debug.print sqr(a)

This will display the square root of 81 ie. 9

Logical Functions

Table 2. lists some of the common Built in Functions in
the Logical category.

Copyright Free under CC BY Licence

116

Table 2

Function Name Description

ISDATE Returns TRUE if the expression is a valid date. Otherwise, it returns FALSE.

ISERROR Checks for error values.

ISNULL Returns TRUE if the expression is a null value. Otherwise, it returns FALSE.

ISNUMERIC Returns TRUE if the expression is a valid number. Otherwise, it returns FALSE.

Examples:

1 Sub Button1_Click()

N = TextBox1.Text

If IsNumeric(N) = True Then

MsgBox "correct"

Else

MsgBox "Insert only numbers"

End If

This checks if the data entered in the textbox is a
number or not.

2 Sub Button1_Click()

N = TextBox1.Text

If IsDate(N) = True Then

MsgBox "correct"

Else

MsgBox "Insert only dates"

 End If

End Sub

This checks if the data entered in the textbox is a valid
date or not.

Date / Time Functions

Table 3. lists some of the common Built in Functions in
the Date / Time category.

Table 3

Function Return Value

DATE Returns the current system date.

DATEADD Returns a date after which a certain time/date interval has been added.

DATEDIFF Returns the difference between two date values, based on the interval specified.

DATEPART Returns a specified part of a given date.

DATESERIAL Returns a date given a year, month, and day value.

DATEVALUE Returns the serial number of a date.

DAY Returns the day of the month (a number from 1 to 31) given a date value.

FORMAT Dates Takes a date expression and returns it as a formatted string.

HOUR Returns the hour of a time value (from 0 to 23).

MINUTE Returns the minute of a time value (from 0 to 59).

MONTH Returns the month (a number from 1 to 12) given a date value.

MONTHNAME Returns a string representing the month given a number from 1 to 12.

NOW Returns the current system date and time.

TIMESERIAL Returns a time given an hour, minute, and second value.

TIMEVALUE Returns the serial number of a time.

WEEKDAY Returns a number representing the day of the week, given a date value.

WEEKDAYNAME Returns a string representing the day of the week given a number from 1 to 7.

YEAR Returns the year portion of the date argument.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

117

Examples

1 DateDiff() Function
Syntax for the DateDiff function is :

DateDiff (interval, date1, date2, [firstdayofweek],
[firstweekofyear])

Parameters or Arguments

Interval is the interval of time to use to calculate the
difference between date1 and date2. Below is a list of
valid interval values as in Table 4

Table 4

Interval Explanation

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Date1 and Date2 are the two dates to calculate the
difference between.

first day of week is optional. It is a constant that specifies
the first day of the week. If this parameter is omitted, Excel
assumes that Sunday is the first day of the week.

first week of year is optional. It is a constant that specifies
the first week of the year. If this parameter is omitted,
Excel assumes that the week containing Jan 1st is the
first week of the year.

Sub test()

Debug.PrintDateDiff("yyyy", "1/12/1999", "31/1/2000")

Debug.PrintDateDiff("q", "1/12/1999", "31/1/2000")

Debug.PrintDateDiff("m", "1/12/1999", "31/1/2000")

End Sub

The result will be

1

4

12

2 Format Date

Syntax

The syntax for the Microsoft Excel FORMAT function is:

Format (expression, [format, [firstdayofweek,
[firstweekofyear]]])

Parameters or Arguments

Expression is the value to format.

Format is optional. It is the format to apply to the
expression. You can either define your own format or use
one of the named formats that Excel has predefined such
as shown in Table 5.

Table 5

Format Explanation

General Date Displays date based on your
system settings

Long Date Displays date based on your
system's long date setting

Medium Date Displays date based on your
system's medium date setting

Short Date Displays date based on your
system's short date setting

Long Time Displays time based on your
system's long time setting

Medium Time Displays time based on your
system's medium time setting

Short Time Displays time based on your
system's short time setting

First day of week is optional. It is a value that specifies
the first day of the week. If this parameter is omitted, the
FORMAT function assumes that Sunday is the first day of
the week. This parameter can be one of the following values
as shown in Table 6.

First week of year is optional. It is a value that specifies
the first week of the year. If this parameter is omitted, the
FORMAT function assumes that the week that contains
January 1 is the first week of the year. This parameter can
be one of the following values as shown in Table 7.

Sub test()

Debug.Print Format(#1/1/1990#, "Short Date")

Debug.Print Format(#1/1/1990#, "Long Date")

Debug.Print Format(#1/1/1990#, "yyyy/mm/dd")

End Sub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

118

Table 6

Constant Value Explanation

vbUseSystem 0 Uses the NLS API setting

VbSunday 1 Sunday (default, if
parameter is omitted)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Table 7

Constant Value Explanation

vbUseSystem 0 Uses the NLS API setting

vbFirstJan1 1 The week that contains
January 1

vbFirstFourDays 2 The first week that has at
least 4 days in the year

vbFirstFullWeek 3 The first full week of the
year

The result will be

1/1/1990

Monday, January 01, 1990

1990/01/01

Data Type Conversion Functions

Table 8. below lists some of the common Built in Functions
in the Data Type Conversion category.

Table 8

Function Return Type Range for expression argument

CBool Boolean Any valid string or numeric expression.

CByte Byte 0 to 255.

CCur Currency -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

CDate Date Any valid date expression.

CDbl Double -1.79769313486231E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E- 324 to 1.79769313486232E308 for positive values.

CDec Decimal +/-79,228,162,514,264,337,593,543,950,335 for zero-scaled numbers,
that is, numbers with no decimal places. For numbers with 28 decimal
places, the range is +/-7.9228162514264337593543950335. The smallest
possible non-zero number is 0.0000000000000000000000000001.

CInt Integer -32,768 to 32,767; fractions are rounded.

CLng Long -2,147,483,648 to 2,147,483,647; fractions are rounded.

CSng Single -3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45
to 3.402823E38 for positive values.

CStr String Returns for CStr depend on the expression argument.

CVar Variant Same range as Double for numerics. Same range as String for non-numerics.

Example
CDate function

Sub test()

Dim lNum As Long

Dim a As String

a = 12345

Debug.PrintCDate(a)

b = "January 1, 1990"

Debug.PrintCDate(b)

c = "1:23:45 PM"

Debug.PrintCDate(c)

End Sub

This will display

10/18/1933

1/1/1990

1:23:45 PM

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

