
97

Introduction

Many applications depend on data input from users to
take the necessary action. Excel VBA has very useful
functions that allow you to gather user input for your
applications. VBA allows you to create message boxes,
user input forms and input boxes to get user input.VBA
message boxes provide a way to give information to a
user and get information from a user while the program is
running. The input Box function can be used to prompt the
user to enter a value.

Message Box

In VBA Message Boxes fall into two basic categories, the
MsgBox method and the MsgBox function.

The MsgBox Method

The message box method is used to display a pre- defined
message to the user. It also contains a single command
button "OK" to allow the user to dismiss the message
and they must do so before they can continue working in
the program.

The basic form of the Message Box (msgbox) in VBAis
:Msgbox("message")

Example:

Sub result()

Msgbox("congratulations")

End sub

This displays a message box as shown in Fig 1

Customize the buttons in a VBA message box

The Msgbox() can be customized by changing the buttons
and icons placed on it.

A list of various buttons and icons that can be used in the
VBA message box is shown in the Table 1.

For ex. to add an icon and a title to the Msgbox() we can
write the following code

Sub test()

Dim n As Integer

n = MsgBox("Congratulations", vbExclamation, "result")

End Sub

This will produce the following result as in Fig 2.

The MsgBox Function

The MsgBox Function displays a message in a dialog
box, waits for the user to click a button, and then returns
an integer indicating which button was clicked by the
user.The syntax of the Msgbox() function is :

Return value = MsgBox(Prompt, Button and Icon types,
Title, Help File, Help File Context)

IT & ITES Related Theory for Exercise 2.2.108
COPA - Programming with VBA

VBA Message boxes and Input boxes
Objectives: At the end of this lesson you shall be able to
• state the uses of message boxes and input boxes in VBA
• describe the msgbox method and msgbox function
• describe the inputbox method and inputbox function.

Fig 1

Fig 2

Copyright Free under CC BY Licence

98

Constant Description

vbOKOnly It displays a single OK button

vbOKCancel It displays two buttons OK and Cancel.

vbAbortRetryIgnore It displays three buttons Abort, Retry, and Ignore.

vbYesNoCancel It displays three buttons Yes, No, and Cancel.

vbYesNo It displays two buttons Yes and No.

vbRetryCancel It displays two buttons Retry and Cancel.

vbCritical It displays a Critical Message icon.

vbQuestion It displays a Query icon.

vbExclamation It displays a Warning Message icon.

vbInformation It displays an Information Message icon.

vbDefaultButton1 First button is treated as default.

vbDefaultButton2 Second button is treated as default.

vbDefaultButton3 Third button is treated as default.

vbDefaultButton4 Fourth button is treated as default.

vbApplicationModal This suspends the current application till the user responds to the
message box.

vbSystemModal This suspends all the applications till the user responds to the message box.

vbMsgBoxHelpButton This adds a Help button to the message box.

VbMsgBoxSetForeground Ensures that message box window is foreground.

vbMsgBoxRight This sets the Text to right aligned

vbMsgBoxRtlReading This option specifies that text should appear as right-to-left.

Table 1

Where:

Return Value: Indicates the action the user took when
the message box was shown to him/her.

Prompt : It is the message contained in the main body of
the message box.

Button and Icon Types : This specifies the set of buttons
& Icons and their placement as they would appear to the
user.

Help File : This is the path to a help file that the user can
refer to on this topic.

Help File Context : This is the pointer to that part of the
help file that specifically deals with this message.

Values returned by MsgBox Function:

VBA MsgBox function returns a value based on the user
input. These values can be anyone of the ones shown in
Table 2.

A Msgbox function example is shown in the code
mentioned below.

Sub test()

Dim n As Integer

 n = MsgBox("Do you want to print this file?", vbYesNo,
"Action on Files")

End Sub
IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

99

Value Description

1 Specifies that OK button is clicked.

2 Specifies that Cancel button is clicked.

3 Specifies that Abort button is clicked.

4 Specifies that Retry button is clicked.

5 Specifies that Ignore button is clicked.

6 Specifies that Yes button is clicked.

7 Specifies that No button is clicked.

Table 2

This will produce the result as in Fig 3.

Reading the Msgbox() return values

Based on the value returned by the MsgBox(), decisions
can be made.

For ex, the code mentioned here will display the message
box, and when the user clicks "Yes" it will display a
congratulatory message. If the user clicks "No" another
message "Better Luck Next time" will appear as shown in
Fig 4.

Sub test()

Dim n As Integer

n = MsgBox("Did you score more than 50 % ", vbYesNo +
vbQuestion, "Result")

If n = 6 Then

MsgBox ("Congratulations")

Else

MsgBox ("Better Luck Next Time")

 End If

End Sub

Input box

For accepting the input from the user the Input box is
used in two ways- The Input Box Function and the Input
Box Method.The InputBox method differs from the InputBox
function in that it allows selective validation of the user's
input, and it can be used with Microsoft Excel objects,
error values, and formulas.

Note that Application.Input Box calls the Input Box method;
Input Box with no object qualifier calls the InputBox
function.

Input Box Function

The Input Box Function displays a dialog box for user
input. It returns the information entered in the dialog box.
The syntax for the InputBox function is:

InputBox(prompt[, title] [, default] [, xpos] [, ypos] [,
helpfile, context])

In its simplest form , the input box function looks like:n =
Inputbox("Enter your Age")

The InputBox Method

When we precede the Input Box Function with "Application"
we get an InputBox Method that will allow us to specify
the type of info that we can collect. Ie. Application.InputBox

Its Syntax is :Input Box(Prompt, Title, Default, Left, Top,
HelpFile, HelpContextId, Type)

The Prompt, Title and Default are the same as in the
InputBox Function. However, it is the last argument "Type"
that allows us to specify the type of data we are going to
collect. These are as shown below.

Type:=0 A formula

Type:=1 A number

Type:=2 Text (a string)

Fig 3

Fig 4

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

100

Type: = 4 A logical value (True or False)

Type: = 8 A cell reference, as a Range object

Type: = 16 An error value, such as #N/A

Type := 64 An array of values

The following is an example of an InputBox method

Sub test()

Dim n As Integer

n = Application.InputBox("Enter you age", "Personal
Details", , , , , , 1)

 'Exit sub if Cancel button used

If n > 60 Then

MsgBox "You are eligible for senior citizen's concession"

Else

MsgBox ("No concession")

End If

End Sub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

101

IT & ITES Related Theory for Exercise 2.2.109A - 2.2.109C
COPA - Programming with VBA

Decision making statements in VBA
Objectives: At the end of this lesson you shall be able to
• describe the decision making process using the “if... Then” statement
• describe the use of “ladder off” and “nested if” statement
• explain the use of the “selectcase” statements.

Introduction

In a program a set of statements are normally executed
sequentially in the order in which they appear. This
happens when no decision making or repetitions are
involved. But in reality, there may be a number of situations
where we may have to change the order of execution of
statements based on certain conditions being true or false.
Some of the examples may be:

a To decide if a trainee is to be declared "Passed" or
"Failed".

b To display the Grade achieved by a student.

c To accept input only of a particular data type like
numbers.

d To decide if a number is prime or not.

e To decide if a string is a palindrome or not.

f To calculate pay, tax, commission etc. based on
certain conditions etc.

g To repeat an action a certain number of times or till a
certain limit is reached.

Decision making process can solve practical problems
intelligently and provide useful output or feedback to the
user. In order to control the program flow and to make
decisions, we need to use the conditional operators and
the logical operators together with the If control structure.

Decision making structures require that the programmer
specify one or more conditions to be evaluated or tested
by the program, along with a statement or statements to
be executed if the condition is found to be true, and other
statements to be executed if the condition is found to be
false.Table 1 shows the commonly used decision making
statements in VBA.

The If … Then Statement

It is the simplest form of control statement, frequently used
in decision making and changing the control flow of the
program execution. Syntax for if-then statement is:

If CONDITION Then

' code if the condition is met

End If

The flow chart for a typical If statement is shown in Fig 1.

Here condition refers to an expression which results in a
Boolean type result, ie. True or False.For ex. the
statement "if age <18" will test if the value of the variable
"age" is less than 18 or not. If the condition evaluates to
true, then the block of code inside the If statement will be
executed. For example:

If (age < 18) Then

debug.print "Not Eligible"

End If

The following example tests the value of the number in the
textbox and takes a decision.

Private Sub Button1_Click()

Dim n As Integer

'Enter the number of items sold by the agent

n = val(TextBox1.Text)

If n> 100 Then

Label1.Caption = " You are entitled for a commission of
Rs. 10000"

Ini�al Value

Yes

Next code to run

Check condi�on

No

Fig 1

Copyright Free under CC BY Licence

102

End If

End Sub

The If Then…. Else Statements

When an action has to be taken if the condition returns
true and another action if the condition returns false, then
we use the If Then…. Else Statements.

The syntax for the If Then … Else statements is as follows

If CONDITION Then

' code if the condition is met

Else

' code if the condition is not met

End If

The flow chart for a typical If Then … Else structure is as
shown in Fig 2.

The example of an If Then … Else structure is shown
below. This program tests if the Taxable Income entered
by the user is less than 250000 or not. If yes, a message
box appears stating that the user need not pay Income
Tax. Else, another message box tells the user to pay the
tax.

Sub test()

Dim income As Long

income = Application.InputBox("Enter you Taxable
income")

If income< 250000 Then

MsgBox "You need not pay any income tax"

Else

Msg Box ("You must pay income tax")

End If

End Sub

Using Multiple If Statements

Sometimes the condition being tested is to be evaluated
not just for returning "True" or "False" based on one
condition, but for multiple conditions too. In such cases
the multiple If Then …. Else statements can be used.
They can be used in two ways:

1 Ladder If and

2 Nested if

Ladder If statements

The ladder if statements can be used to test if a condition1,
condition2 … etc is met, and decision be taken based on
which condition is met. The typical syntax of a Ladder If
structure is:

if(boolean_expression 1)

{

/* Executes when the boolean expression 1 is true */

}

else if(boolean_expression 2)

{

 /* Executes when the boolean expression 2 is true */

}

else if(boolean_expression 3)

{

 /* Executes when the boolean expression 3 is true */

}

else

{

 /* executes when the none of the above condition is true
*/

}

Check condi�on

Ini�al Value

Yes

Next code to run

No

Code A Code B

Fig 2

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 2.2.109A - 2.2.109C

Copyright Free under CC BY Licence

103

The following is an example of a ladder if structure.

Sub grades()

Dim marks As Integer

marks = InputBox("Enter you marks")

If marks >= 80 Then

MsgBox "Distinction"

ElseIf marks >= 70 Then

MsgBox "A Grade"

ElseIf marks >= 60 Then

MsgBox "B Grade"

ElseIf marks >= 40 Then

MsgBox "C Grade"

Else

MsgBox "Failed"

End If

End Sub

This program would display the grade based on the marks
entered by the user.

Nested If statements
Sometimes it is required to evaluate one condition only if
an earlier condition is met. In such cases an If Then
statement can be placed inside an outer If Then statement.
This type of structure is also called a Nested If
structure.The syntax of a nested if structure is as follows:

If(Boolean_expression 1)

{

//Executes when the Boolean expression 1 is true

If(Boolean_expression 2)

{

//Executes when the Boolean expression 2 is true

}

}

For ex. A certain recruitment condition states that a
candidate to be declared eligible must have a minimum of
5 years' experience and also must have scored atleast
75% marks in the exam. In such a case, the first condition
to be tested is for experience >= 5 years andonly if this
condition is met, the second condition is to be evaluated.

If the first condition is not met, the control jumps to the
statement after the End if statement. The following code
is an example for the mentioned example.

Sub job_test()

Dim experience, marks As Integer

experience = InputBox("Enter your work experience in
years")

If experience >= 5 Then

marks = InputBox("Enter you marks percentage")

If marks >= 75 Then

MsgBox (" You are eligible for the post")

Else

MsgBox (" You are NOT eligible for the post")

End If

Else

MsgBox (" You are NOT eligible for the post")

End If

End Sub

Using Logical operators in If Structure
The Logical operators And, Or and Not can be used in If
structure and produce the same results as those produced
in Nested If Structures.

For ex. the above mentioned condition can be evaluated
using the And operator in the conditional statement.

Sub job_test()

Dim experience, marks As Integer

experience = InputBox("Enter your work experience in
years")

marks = InputBox("Enter you marks percentage")

If experience >= 5 And marks >= 75 Then

MsgBox (" You are eligible for the post")

Else

MsgBox (" You are NOT eligible for the post")

End If

End Sub

Select...Case
Another way to implement decision making in your VBA
code is to use a Select...Case statement. Select...Case
statements can be used to easily evaluate the same
variable multiple times and then take a particular action
depending on the evaluation.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 2.2.109A - 2.2.109C

Copyright Free under CC BY Licence

104

It is always a good practice to use Select Case Statement
when multiple If-Else conditions are involved. As the number
of If-Else conditions increases, debugging and
understanding all the flow becomes a tedious job.

The syntax for a Select...Case statement is:

Select Case VARIABLE

Case VALUE1

' code to run if VARIABLE equals Value1

Case VALUE2

' code to run if VARIABLE equals Value2

Case Else

' code to run for remaining cases

End Select

For Ex. This program asks the user to type the name of
the game and displays the number of players for the game.

Sub players()

Dim game As String

game = InputBox("enter the name of the game")

game = LCase(game)

Select Case game

Case "tennis"

Debug.Print "2 Players."

Case "cricket"

Debug.Print "11 Players."

Case "volleyball"

Debug.Print "5 Players."

Case "baseball"

Debug.Print "9 Players."

Case Else

Debug.Print "I have no idea."

End Select

End Sub

IIF Function
IIF function is used to evaluate an expression and perform
one of two actions based on the outcome of the evaluation.
For example:

IIF (Value > 10, Perform this action if Value is <= 10,
Perform this action is Value is > 10)

This function is available within VBA code and also as an
Excel function. Usually the IIF function is used to perform
quick logical assessments and can be nested to perform
more complicated evaluations. It is however important to
remember that nested IF statements can become very
complicated and difficult to support and maintain.

Now let’s look at an example. Let’s assume that we want
to calculate the length of the string only if it contains the
value Excel Help and Excel. (Fig 3)

It is important to note that we could have used the IIF
statement in one of our For Next loops to run through all
the rows on a worksheet.

Code

Dim StringToProcess As String’Variable to hold the string

to be processed

StringToProcess = ActiveSheet.Cells(2, 1).Value

ActiveSheet.Cells(6, 1).Value = IIf(InStr(StringToProcess,

“ExcelHelp”) > 0, IIf(InStr(StringToProcess, “ Excel “) > 0,

Len(StringToProcess), 0), 0)

Output (Fig 4)

Fig 3

Fig 4

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 2.2.109A - 2.2.109C

Copyright Free under CC BY Licence

