
115

IT & ITES Related Theory for Exercise 2.2.113
COPA - Programming with VBA

Built in Functions in VBA
Objectives: At the end of this lesson you shall be able to
• describe the math functions in VBA
• describe the logical functions in VBA
• describe the date/time functions in VBA
• describe the conversion functions in VBA.

Introduction

VBA has a rich collection of built in functions that perform
a variety of tasks and calculations for you. There are
functions to convert data types, perform calculations on
dates, perform simple to complex mathematics, make
financial calculations, manage text strings, format values,
and retrieve data from tables, among others. Using the
VBA Built in Functions will help coding much easier for
the user. We have already used many built in functions in
our earlier lessons like the msgbox function and many
string manipulation functions just to name a few.

MS Excel: VBA Functions (VBA Formulae) - Category
wise

The commonly used VBA functions in Excel, sorted by
Category are shown here.

String Functions: The string functions were already
discussed in the related theory for Ex. 2.2.09

Math Functions

Table 1 : Lists some of the common Built in Functions in
the Mathematical category.

Table 1

Function Name Description

Abs Returns the absolute value of a number.

Cos Returns the cosine of the specified angle.

Cosh Returns the hyperbolic cosine of the specified angle.

Exp Returns e (the base of natural logarithms) raised to the specified power.

Fix Returns the integer portion of a number.

Format Takes a numeric expression and returns it as a formatted string.

Int Returns the integer portion of a number.

Log Returns the natural (base e) logarithm of a specified number or the logarithm of a specified
number in a specified base.

Rnd Generates a random number (integer value)

Round Returns a Decimal or Double value rounded to the nearest integral value or to a specified
number of fractional digits.

Sign Returns an Integer value indicating the sign of a number.

Sin Returns the sine of the specified angle.

Sqr Returns the square root of a specified number.

Tan Returns the tangent of the specified angle.

Val Accepts a string as input and returns the numbers found in that string.

1 Dim a, b as integer

a=81

debug.print sqr(a)

This will display the square root of 81 ie. 9

Logical Functions

Table 2. lists some of the common Built in Functions in
the Logical category.

Copyright Free under CC BY Licence

116

Table 2

Function Name Description

ISDATE Returns TRUE if the expression is a valid date. Otherwise, it returns FALSE.

ISERROR Checks for error values.

ISNULL Returns TRUE if the expression is a null value. Otherwise, it returns FALSE.

ISNUMERIC Returns TRUE if the expression is a valid number. Otherwise, it returns FALSE.

Examples:

1 Sub Button1_Click()

N = TextBox1.Text

If IsNumeric(N) = True Then

MsgBox "correct"

Else

MsgBox "Insert only numbers"

End If

This checks if the data entered in the textbox is a
number or not.

2 Sub Button1_Click()

N = TextBox1.Text

If IsDate(N) = True Then

MsgBox "correct"

Else

MsgBox "Insert only dates"

 End If

End Sub

This checks if the data entered in the textbox is a valid
date or not.

Date / Time Functions

Table 3. lists some of the common Built in Functions in
the Date / Time category.

Table 3

Function Return Value

DATE Returns the current system date.

DATEADD Returns a date after which a certain time/date interval has been added.

DATEDIFF Returns the difference between two date values, based on the interval specified.

DATEPART Returns a specified part of a given date.

DATESERIAL Returns a date given a year, month, and day value.

DATEVALUE Returns the serial number of a date.

DAY Returns the day of the month (a number from 1 to 31) given a date value.

FORMAT Dates Takes a date expression and returns it as a formatted string.

HOUR Returns the hour of a time value (from 0 to 23).

MINUTE Returns the minute of a time value (from 0 to 59).

MONTH Returns the month (a number from 1 to 12) given a date value.

MONTHNAME Returns a string representing the month given a number from 1 to 12.

NOW Returns the current system date and time.

TIMESERIAL Returns a time given an hour, minute, and second value.

TIMEVALUE Returns the serial number of a time.

WEEKDAY Returns a number representing the day of the week, given a date value.

WEEKDAYNAME Returns a string representing the day of the week given a number from 1 to 7.

YEAR Returns the year portion of the date argument.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

117

Examples

1 DateDiff() Function
Syntax for the DateDiff function is :

DateDiff (interval, date1, date2, [firstdayofweek],
[firstweekofyear])

Parameters or Arguments

Interval is the interval of time to use to calculate the
difference between date1 and date2. Below is a list of
valid interval values as in Table 4

Table 4

Interval Explanation

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Date1 and Date2 are the two dates to calculate the
difference between.

first day of week is optional. It is a constant that specifies
the first day of the week. If this parameter is omitted, Excel
assumes that Sunday is the first day of the week.

first week of year is optional. It is a constant that specifies
the first week of the year. If this parameter is omitted,
Excel assumes that the week containing Jan 1st is the
first week of the year.

Sub test()

Debug.PrintDateDiff("yyyy", "1/12/1999", "31/1/2000")

Debug.PrintDateDiff("q", "1/12/1999", "31/1/2000")

Debug.PrintDateDiff("m", "1/12/1999", "31/1/2000")

End Sub

The result will be

1

4

12

2 Format Date

Syntax

The syntax for the Microsoft Excel FORMAT function is:

Format (expression, [format, [firstdayofweek,
[firstweekofyear]]])

Parameters or Arguments

Expression is the value to format.

Format is optional. It is the format to apply to the
expression. You can either define your own format or use
one of the named formats that Excel has predefined such
as shown in Table 5.

Table 5

Format Explanation

General Date Displays date based on your
system settings

Long Date Displays date based on your
system's long date setting

Medium Date Displays date based on your
system's medium date setting

Short Date Displays date based on your
system's short date setting

Long Time Displays time based on your
system's long time setting

Medium Time Displays time based on your
system's medium time setting

Short Time Displays time based on your
system's short time setting

First day of week is optional. It is a value that specifies
the first day of the week. If this parameter is omitted, the
FORMAT function assumes that Sunday is the first day of
the week. This parameter can be one of the following values
as shown in Table 6.

First week of year is optional. It is a value that specifies
the first week of the year. If this parameter is omitted, the
FORMAT function assumes that the week that contains
January 1 is the first week of the year. This parameter can
be one of the following values as shown in Table 7.

Sub test()

Debug.Print Format(#1/1/1990#, "Short Date")

Debug.Print Format(#1/1/1990#, "Long Date")

Debug.Print Format(#1/1/1990#, "yyyy/mm/dd")

End Sub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

118

Table 6

Constant Value Explanation

vbUseSystem 0 Uses the NLS API setting

VbSunday 1 Sunday (default, if
parameter is omitted)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Table 7

Constant Value Explanation

vbUseSystem 0 Uses the NLS API setting

vbFirstJan1 1 The week that contains
January 1

vbFirstFourDays 2 The first week that has at
least 4 days in the year

vbFirstFullWeek 3 The first full week of the
year

The result will be

1/1/1990

Monday, January 01, 1990

1990/01/01

Data Type Conversion Functions

Table 8. below lists some of the common Built in Functions
in the Data Type Conversion category.

Table 8

Function Return Type Range for expression argument

CBool Boolean Any valid string or numeric expression.

CByte Byte 0 to 255.

CCur Currency -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

CDate Date Any valid date expression.

CDbl Double -1.79769313486231E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E- 324 to 1.79769313486232E308 for positive values.

CDec Decimal +/-79,228,162,514,264,337,593,543,950,335 for zero-scaled numbers,
that is, numbers with no decimal places. For numbers with 28 decimal
places, the range is +/-7.9228162514264337593543950335. The smallest
possible non-zero number is 0.0000000000000000000000000001.

CInt Integer -32,768 to 32,767; fractions are rounded.

CLng Long -2,147,483,648 to 2,147,483,647; fractions are rounded.

CSng Single -3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45
to 3.402823E38 for positive values.

CStr String Returns for CStr depend on the expression argument.

CVar Variant Same range as Double for numerics. Same range as String for non-numerics.

Example
CDate function

Sub test()

Dim lNum As Long

Dim a As String

a = 12345

Debug.PrintCDate(a)

b = "January 1, 1990"

Debug.PrintCDate(b)

c = "1:23:45 PM"

Debug.PrintCDate(c)

End Sub

This will display

10/18/1933

1/1/1990

1:23:45 PM

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

119

IT & ITES Related Theory for Exercise 2.2.114 & 2.2.115
COPA - Programming with VBA

User defined functions in VBA
Objectives: At the end of this lesson you shall be able to
• create user defined functions
• describe passing values to functions byval and byref
• describe using arrays with functions
• describe the scope of variables
• describe the access specifiers public and private.

Introduction

In Excel Visual Basic too, like in most programming
languages, a set of commands to perform a specific task
is placed into a procedure, which can be a function or a
subroutine. The main difference between a VBA function
and a VBA subroutine is that a function (generally) returns
a result, whereas a subroutine does not.

Therefore, if you wish to perform a task that returns a
result (ex. summing of a group of numbers), you will
generally use a function, but if you just need a set of actions
to be carried out (ex. formatting a set of cells), you might
choose to use a subroutine.

User Defined Functions

One of the most power features of Excel VBA is that you
can create your own functions or UDFs. A UDF (User
Defined Function) is simply a function that you create
yourself with VBA for your own defined tasks. UDFs are
often called "Custom Functions". A UDF can remain in a
code module attached to a workbook, in which case it will
always be available when that workbook is open.
Alternatively you can create your own add-in containing
one or more functions that you can install into Excel. Here
the user-defined functions can be entered into any cell or
on the formula bar of the spreadsheet just like entering
the built-in formulas of the MS Excel spreadsheet.

Custom functions, like macros, use the Visual Basic for
Applications (VBA) programming language. They differ from
macros in two significant ways. First, they use function
procedures instead of sub procedures. They start with a
Function statement instead of a Sub statement and end
with End Function instead of End Sub. Second, they
perform calculations instead of taking actions. Certain
kinds of statements (such as statements that select and
format ranges) are generally excluded from custom
functions.

A simple function may look like this:

Function area()

Dim l, b

l = 10

b = 20

Debug.Print "area Is " & l * b

End Function

When executed from the immediate window this function
displays the area.

Alternately this function can be called by another
subroutine, for ex.

Sub test_fn()

Call area

End Sub

Returning a value from the procedures

In the example given below, the area() function calculates
l*b.

The subroutine that calls this function is returned this value.

Sub test_fn()

Debug.Print "The function has returned the value " & area

End Sub

Function area()

Dim l, b, A

l = 10

b = 20

area = l * b

End Function

The result will be:The function has returned the value 200

Passing Arguments to functions

We can pass the arguments in two different ways:

Copyright Free under CC BY Licence

