
135

IT & ITES Related Theory for Exercise 2.2.120
COPA - Programming with VBA

Object Oriented Programming concepts, Concepts of classes, Objects,
properties and Methods
Objectives: At the end of this lesson you shall be able to
• explain Class and objects and its features
• explain VBA Class modules Versus VBA normal modules
• list out parts of a class module and its properties
• explain class module events.

Introduction

VBA Class Modules allow the user to create their own
objects. In languages such as C# and Java, classes are
used to create objects. Class Modules are the VBA
equivalent of these classes. The major difference is that
VBA Class Modules have a very limited type of
Inheritance* compared to classes in the other
languages. In VBA, Inheritance works in a similar way
to Interfaces in C#\Java.

In VBA we have built-in objects such as the Collection,
Workbook, Worksheet and so on. The purpose of VBA
Class Modules is to allow us to custom build our own
objects.

Let’s start this post by looking at why we use objects in
the first place.

Inheritance is using an existing class to build a new
class.
Interfaces are a form of Inheritance that forces a class
to implement specifics procedures or properties.

Objects

Using objects allows us to build our applications like we
are using building blocks.

The idea is that the code of each object is self-
contained. It is completely independent of any other
code in our application.

Advantages of Using Objects

Treating parts of our code as blocks provide us with a lot
of advantages

1 It allows us to build an application one block at a time.

2 It is much easier to test individual parts of an
application.

3 Updating code won’t cause problems in other parts of
the application.

4 It is easy to add objects between applications.

Disadvantages of Using Objects

With most things in life there are pros and cons. Using
VBA class modules is no different. The following are the
disadvantages of using class module to create objects
1 It takes more time initially to build applications*.

2 It is not always easy to clearly define what an object
is.

3 People new to classes and objects can find them
difficult to understand at first.

 If create an application using objects it will take longer to
create it initially have to spend more time planning and
designing it. However, in the long run it will save a huge
amount of time. The code will be easier to manage, update
and reuse.

Creating a Simple Class Module

Let’s look at a very simple example of creating a class
module and using it in our code.

To create a class module we right-click in the Project
window and then select Insert and Class Module. (Fig 1)

Adding a Class Module

Our new class is called Class1. We can change the name
in the Properties window.

Fig 1

Copyright Free under CC BY Licence

136

Let’s change the name of the class module to
clsCustomer. Then we will add a variable to the class
module like this

Public Name AsString (Fig 2)

Fig 2

We can use now use this class module in any
module(standard or class) in our workbook. For example
‘ Create the object from the class module

Dim oCustomer AsNew clsCustomer

‘ Set the customer name

oCustomer.Name = “John”

‘ Print the name to the Immediate Window(Ctrl + G)

Debug.Print oCustomer.Name

Class Module versus Objects

People who are new to using classes and VBA class
modules, often get confused between what is a class and
what is an object.

Let’s look at a real-world example. Think of a mass-
produced item like a coffee mug. A design of the mug is
created first. Then, thousands of coffee mugs are created
from this design.

This is similar to how class modules and objects work.

The class module can be thought of as the design.

The object can be thought of as the item that is created
from the design.

The New keyword in VBA is what we use to create an
object from a class module. For example

‘ Creating objects using new

Dim oItem AsNew Class1

Dim oCustomer1 AsNewclsCustomer

Dim coll AsNew Collection

Note: We don’t use New with items such as
Workbooks and Worksheets. See When New
is not required for more information.

VBA Class Modules Versus VBA Normal Modules

Writing code in a class module is almost the same as
writing code in a normal module. We can use the same
code we use in normal modules. It’s how this code is
used which is very different.

Let’s look at the two main differences between the class
and normal module. These often cause confusion among
new users.
Difference 1 – How the modules are used

If want to use a sub/function etc. from a class module
must create the object first.

For example, imagine we have two identical
PrintCustomer subs. One is in a class module and one
is in a normal module…

‘ CLASS MODULE CODE - clsCustomer

Public Sub PrintCustomer()

Debug.Print “Sample Output”

End Sub

‘ NORMAL MODULE CODE

Public Sub PrintCustomer()

Debug.Print “Sample Output”

End Sub

You will note the code for both is exactly the same.

To use the PrintCustomer sub from the class module,
you must first create an object of that type
‘ Other Module

Sub UseCustomer()

Dim oCust AsNew clsCustomer

oCust.PrintCustomer

EndSub

To use Print Customer from the normal module you can
call it directly

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

137

‘ Other Module

Sub Use Customer()

Print Customer

End Sub

Difference 2 – Number of copies

Whencreate a variable in a normal module there is only
one copy of it. For a class module, there is one copy of
the variable for each object you create.

For example, imagine we create a variable Student Name
in both a class and normal module..
‘ NORMAL MODULE

Public StudentName As String

‘ CLASS MODULE

Public Studen tName As String

For the normal module variable there will only be one copy
of this variable in our application.

StudentName = “Ram”

For the class module a new copy of the variable Student
Name is created each time a new object is created.

Dim student1 As New clsStudent

Dim student 2 As New clsStudent

student1.Student Name = “Bill”

student2.Student Name = “Ted”

When fully understand VBA class modules, these
differences will seem obvious.

The Parts of a Class Module

There are four different items in a class module. These are
1 Methods – functions/subs.

2 Member variables – variables.

3 Properties– types of functions/subs that behave like
variables.

4 Events – subs that are triggered by an event.

And can see they are all either functions, subs or variables.

Let’s have a quick look at some examples before we deal
with them in turn
‘ CLASS MODULE CODE

‘ Member variable

Private dBalance As Double

‘ Properties

Property Get Balance () AsDouble

Balance = dBalance

EndProperty

Property Let Balance(dValueAs Double)

dBalance = dValue

End Property

‘ Event - triggered when class created

Private Sub Class_Initialize()

dBalance = 100

EndSub

‘ Methods

Public Sub Withdraw (dAmountAs Double)

dBalance = dBalance - dAmount

End Sub

Public Sub Deposit (dAmountAs Double)

dBalance = dBalance + dAmount

EndSub

Now that we have seen examples, let’s look at each of
these in turn.

Class Module Methods

Methods refer to the procedures of the class. In VBA
procedures are subs and functions. Like member variables
they can be Public or Private.

Let’s look at an example

‘ CLASS MODULE CODE

‘ Class name: clsSimple

‘ Public procedures can be called from outside the object

Public Sub PrintText (sTextAs String)

Debug.PrintsText

EndSub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

138

Public Function Calculate (dAmountAs Double) As
Double

Calculate = dAmount - GetDeduction

End Function

‘ private procedures can only be called from within the
Class Module

Private Function GetDeduction () As Double

GetDeduction = 2.78

EndFunction

We can use the clsSimple class module like this

Sub Class Members ()

Dim oSimple As New clsSimple

oSimple.PrintText “Hello”

Dim dTotal As Double

dTotal = oSimple.Calculate(22.44)

Debug.Print dTotal

EndSub

Class Module Member Variables

The member variable is very similar to the normal variable
we use in VBA. The difference is we use Public or Private
instead of Dim.

‘ CLASS MODULE CODE

Private Balance AsDouble

Public AccountID As String

Note: Dim and Private do exactly the same
thing but the convention is to use Dim in sub/
functions and to use Private outside sub/
functions.

The Public keyword means the variable can be accessed
from outside the class module. For example

Dim oAccount AsNew clsAccount

‘ Valid - AccountID is public

oAccount.AccountID = “499789”

‘ Error - Balance is private

oAccount.Balance = 678.90

 In the above example we cannot access Balance because
it is declared as Private. We can only use a Private
variable within the class module. We can use in a function/
sub in the class module e.g.

‘ CLASS MODULE CODE

Private Balance As Double

Public SubSetBalance()

 Balance = 100

Debug.Print Balance

End Sub

It is considered poor practice to have public member
variables. This is because the code allowing outside the
object to interfere with how the class works. The purpose
of the using classes is so that hide what is happening
from the caller.

To avoid the user directly talking to the member variables
we use Properties.

Class Module Properties

1 Get – returns an object or value from the class

2 Let – sets a value in the class

3 Set – sets an object in the class

Format of VBA Property

The normal format for the properties are as follows:

Public Property Get () AsType

End Property

Public Property Let (varnameAsType)

End Property

Public PropertySet (varnameAsType)

EndProperty

We have seen already that the Property is simply a type
of sub. The purpose of the Property is to allow the caller to
get and set values.

Use of Properties

Imagine we have a class that maintains a list of Countries.
We could store the list as an array

‘ Use array to store countries

Public arrCountries As Variant

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

139

‘ Set size of array when class is initialized

Private Sub Class_Initialize()

ReDim arrCountries (1 To 1000)

End Sub

When the user wants to get the number of countries in the
list they could do this

‘ NORMAL MODULE CODE

Dim oCountry As New clsCountry

‘ Get the number of items

NumCountries = UBound(oCountry.arrCountries) + 1

There are two major problems with the above code

1 To get the number of countries you need to know how
the list is stored e.g. Array.

2 If we change the Array to a Collection, we need to
change all code that reference the array directly.

To solve these problems we can create a function to return
the number of countries

‘ CLASS MODULE CODE - clsCountryList

‘ Array

Private arrCountries () As String

Public Function Count () AsLong

 Count = UBound(arrCountries) + 1

End Function

We then use it like this

‘ MODULE CODE

Dim oCountries As New clsCountries

Debug.Print “Number of countries is “ &oCountries.Count

This code solves the two problems we listed above. We
can change our Array to a Collection and the caller code
will still work e.g.

‘ CLASS MODULE CODE

‘ Collection

Private collCountries() As Collection

Public FunctionCount() AsLong

 Count = collCountries.Count

End Function

The caller is oblivious to how the countries are stored. All
the caller needs to know is that the Count function will
return the number of countries.

As we have just seen, a sub or function provides a solution
to the above problems. However, using a Property can
provide a more elegant solution.

Using a Property instead of a Function/Sub

Instead of the creating a Count Function we can create a
Count Property. As you can see below they are very similar

‘ Replace this

Public Function Count() As Long

 Count = UBound(arrCountries) + 1

End Function

‘ With this

Property Get Count () As Long

 Count = UBound(arrCountries) + 1

End Function

In this scenario, there is not a lot of difference between
using the Property and using a function. However, there
are differences. We normally create a Get and Let property
like this

‘ CLASS MODULE CODE - clsAccount

Privated TotalCost As Double

Property Get TotalCost () As Long

Total Cost= dTotalCost

End Property

Property Let Total Cost (dValue As Long)

dTotal Cost = dValue

End Property

Using Let allows us to treat the property like a variable.
So we can do this

oAccount.Total Cost = 6

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

140

The second difference is that using Let and Get allows
us to use the same name when referencing the Get or
Let property. So we can use the property like a variable.
This is the purpose of using Properties over a sub and
function.

oAccount.TotalCost = 6

dValue = oAccount.TotalCost

If we used a function and a sub then we cannot get the
behaviour of a variable. Instead we have to call two different
procedures e.g.

oAccount.SetTotalCost 6

dValue = oAccount.GetTotalCost

You can also see that when we used Let we can assigned
the value like a variable. When we use Set Total Cost,
we had to pass it as a parameter.

The Property in a Nutshell

1 The Property hides the details of the implementation
from the caller.

2 The Property allows us to provide the same behaviour
as a variable.

Types of VBA Property

There are three types of Properties. We have seen Get
and Let already. The one we haven’t looked at is Set.

Set is similar to Let but it is used for an object(see
Assigning VBA Objects for more detail about this).

Originally in Visual Basic, the Let keyword was used to
assign a variable. In fact, we can still use it if we like.

‘ These line are equivalent

Let a = 7

a = 7

So we use Let to assign a value to a variable and we use
Set to assign an object to an object variable

‘ Using Let

Dim a As Long

Let a = 7

‘ Using Set

Dim coll1 As Collection, coll2 As Collection

Set coll1 = New Collection

Set coll2 = coll1

• Let is used to assign a value to a basic variable type.

• Set is used to assign an object to an object variable.

In the following example, we use Get and Let properties
for a string variable

‘ CLASS MODULE CODE

‘ SET/LET PROPERTIES for a variable

Private m_sName As String

‘ Get/Let Properties

Property Get Name() As String

 Name = m_sName

End Property

Property Let Name (sNameAs String)

m_sName = sName

End Property

We can then use the Name properties like this

Sub Test Let Set()

Dim sName As String

Dim coll As New Collection

Dim oCurrency As New clsCurrency

‘ Let Property

oCurrency.Name = “USD”

‘ Get Property

sName = oCurrency.Name

End Sub

In the next example, we use Get and Set properties for an
object variable

‘ CLASS MODULE CODE

Private m_collPrices As Collection

‘ Get/Set Properties

Property Get Prices() As Collection

Set Prices = m_collPrices

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

141

End Property

Property Set Prices (collPricesAs Collection)

Set m_collPrices = collPrices

End Property

We can then use the properties like this

Sub Test Let Set ()

Dim coll1 As New Collection

Dim oCurrency As New cls Currency

‘ Set Property

Set oCurrency.Prices = coll1

‘ Get Property

Dim coll2 As Collection

Set Coll2 = oCurrency.Prices

EndSub

We use the Get property to return the values for both items.
Notice that even though we use the Get Property to return
the Collection, we still need to use the Set keyword to
assign it.

Class Module Events

A class module has two events
1 Initialize – occurs when a new object of the class is

created.

2 Terminate – occurrs when the class object is deleted.

In Object Oriented languages like C++, these events are
referred to as the Constructor and the Destructor. In most
languages, you can pass parameters to a constructor but
in VBA you cannot. We can use a Class Factory to get
around this issue as we will see below.

Initialize

Let’s create a very simple class module called clsSimple
with Initialize and Terminate events

‘ CLASS MODULE CODE

Private SubClass_Initialize()

Msg Box “Class is being initialized”

End Sub

Private SubClass_Terminate()

Msg Box “Class is being terminated”

End Sub

Public Sub Print Hello ()

Debug.Print “Hello”

End Sub

In the following example, we use Dim and New to create
the object.

In this case, oSimple is not created until we reference it
for the first time e.g.

Sub Class Event sInit2 ()

Dim oSimple As New clsSimple

‘ Initialize occurs here

oSimple.PrintHello

EndSub

When we use Set and New together the behaviour is
different. In this case the object is created when Set is
used e.g.

Sub Class Events Init()

Dim oSimple As clsSimple

‘ Initialize occurs here

Set oSimple = New clsSimple

oSimple.PrintHello

End Sub

Note: For more information about the different
between using New with Dim and using New
with Set see Subtle Differences of Dim Versus
Set

As said earlier, you cannot pass a parameter to Initialize.
If you need to do this you need a function to create the
object first

‘ CLASS MODULE - clsSimple

Public Sub Init (Price As Double)

EndSub

‘ NORMAL MODULE

PublicSubTest()

‘ Use CreateSimpleObject function

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

142

Dim oSimple As clsSimple

Set oSimple = CreateSimpleObject(199.99)

End Sub

Public Function CreateSimpleObject(Price As Double)
As clsSimple

Dim oSimple As New clsSimple

oSimple.Init Price

Set CreateSimpleObject = oSimple

End Function

 We will expand on this CreateSimpleObject in Example
2 to create a Class Factory.

Terminate

The Terminate event occurs when the class is deleted.
This happens when we set it to Nothing

Sub Class EventsTerm ()

Dim oSimple As clsSimple

Set oSimple = NewclsSimple

‘ Terminate occurs here

Set oSimple = Nothing

End Sub

If we don’t set the object to Nothing then VBA will
automatically delete it when it goes out of scope.

What this means is that if we create an object in a
procedure, when that procedure ends VBA will delete any
objects that were created.

Sub Class EventsTerm2()

Dim oSimple As New clsSimple

‘ Initialize occurs here

oSimple.PrintHello

‘ oSimple is deleted when we exit this Sub calling Terminate

EndSub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.120

Copyright Free under CC BY Licence

143

IT & ITES Related Theory for Exercise 2.3.121
COPA - Using Accounting Software

Introduction to Tally, Features and Advantages
Objectives: At the end of this lesson you shall be able to
• explain about the tally software & history of Tally
• features of the tally software
• advantages of the tally software.

Introduction to Tally : Tally is an complete accounting
software. It is a versatile and massive software package,
being used by various types of business Organisations.

History of Tally

Tally is a complete business solution for any kind of Busi-
ness Enterprise. It is a full fledged accounting software.

The Initial Release of Tally was Tally 4.5 version. This is
DOS (MS-DOS) based software released in the beginning
of 1986's. It had Basic Financial Accounting / Book Keep-
ing Tools. Personal computers had gaining popularity in
India those days.

Peutronics (The Company that develops Tally) used this
opportunity and put their Tally Version 4.5 on the market.

Auditors and Accountants who used to maintain large vol-
umes of hard-bound notebooks were amazed at the abil-
ity of Tally to calculate Balance sheets and Profit Loss
accounts within seconds. All you need to do is just create
Ledgers and enter vouchers. Tally will do the rest. It will
create all the statements, Trial Balance and Balance Sheet
For you.

The subsequent Tally releases are Tally 5.4, Tally 6.3,
Tally 7.2, Tally 8.1 and Tally 9.0, Tally ERP (Enterprise
Resources Planning). These release Include support for
Inventory used to stock maintenance of the company,
Payroll which used to employee salary calculation and
wages payments and Multi Lingual support in Many In-
dian languages Hindi, Tamil, Telugu, Kannada, Malayalam,
Gujarati, Marathi and more.

Versions of Tally:

Tally 4.0 & Tally 4.5: This version MS-DOS support finan-
cial accounting system. It takes care of accounting activi-
ties only such as Ledgers Classification Vouchers Entry.
It provides simple financial reports and bill wise analysis
of debtors and creditors in the business.

Tally 5.0: This version is an upgraded version to tally 4.5
and it works in windows operating system Inventory mod-
ules is introduced in this version, which involves detailed
inventory, structure invoicing and integrating accounting
and Inventory records.

Tally 5.4: This version is an improved module over the ver-
sion 5.0 where it is capable of converting earlier data for-

mats in to the current data format. This is possible though
Import of Data Facility.

Tally 6.3: Tally 6.3 is extended enterprise systems whereby
it interacts with other system through ODBC (Open Data
Base Connectivity) you and e-mail upload your financial
records form tally.

Tally 7.2: This version is an integrated enterprise system
provides different kind of taxes like VAT, TDS & TCS and
Service Tax modules is introduced in this version.

 Tally 8.1: Tally 8.1 is multi language support software. It
supports 10 Languages includes is introduced in this ver-
sion.

Tally 9.0: This version is an improved model over the ver-
sion 8.1. it supports 13 Languages (Includes Foreign Lan-
guages). Payroll, POS (Point of Sales) modules is intro-
duced in this version.

Tally.ERP9: This is the latest version which provides dif-
ferent features like remote access,much powerful data
security, tally.net and many more.

Tally ERP9 is considered as the latest version.

Features of Tally

1 Accounting Features

i Handles different types of vouchers

- Payments Receipt

- Journals

- Debit Notes

- Credit Notes

- Sales Notes

- Purchase Notes

- Receipt Notes

- Delivery Notes etc.

ii Handles Primary Books of Accounts

- Cash Book

- Bank Book

- Ledger

Copyright Free under CC BY Licence

144

- Purchase registers

- Sales Registers etc.,

iii Used to prepare Statement of Accounts

- Trial Balance

- Profit and loss Accounts

- Trade Accounts

- Balance Sheet

- Funds Flow

- Cash Flow

2 Financial Management Features

- We can get closing stock value as entered in stock
ledgers by non-integrating Accounts and Inventory.

- Daily Balances and Transactions value can be got.

- Funds flow and cash flow statements to track
movement of cash and funds in the company.

- Tally computes interests as per book date.

- Tally provides Budgeting option.

- Ratio Analysis provides important performance ratios
that give the pulse of the corporate health.

3 Inventory Management Features

- Flexible invoicing and billing terms.

- Flexible units of measure.

- Stock Transfer-Tally provides stock journal.

- Stock query provides all relevant information for any
stock item in a single screen.

- Multiple stock valuation methods like FIFO, LIFO
and average methods are enhanced in Tally.

4 Security Features

- The system administrator can define multiple levels
of security. Hence can credit, authorize-users,
assign passwords and assign specific task rights.

- Tally offers data encryption (Tally vault) and follows
Data Encryption Standard (DES) Encryption
methods.

- Tally provides options for data backup in floppy/hard
disk and restoration of backup data.

- Tally locker: It is a small portable hardware device
of a thumb size with storage capacity of 16MB. We
can store data and work directly at tally locker. When
the task is over, we can simply keep it in our pocket.
It is also used for backup.

5 Technological features

- Tally allows importing data from other software as
well as exporting data from tally.

- ODBC connectivity is available in Tally. We can
connect applications like MS Word, MS Excel,
Oracle and can use data from tally directly.

- While working with tally, we can e-mail, browse a
website. We can send a report on document directly
from tally.

- We can upload reports on the website directly from
tally.

- Protocol support for HTTP, HTTPS, FTP, SMTP,
ODBC and RAW sockets with data interchange
formats like XML, HTML, related formats.

Advantages of the Tally

1 Simple and Rapid Installation
- Tally.ERP9's installation is a wizard driven, simple

and speedy process involving minimal user-
intervention. The software occupies tiny space and
can be installed on any drive. Tally.ERP9 supports
installation on multiple systems connected to a
network with different operating systems
(Windows98, NT, 2000, XP and Windows7)

2 Auto Backup and Restore

- Tally.ERP9 provides automatic backup facility to
secure your company from any kind of data loss /
corruption and helps in smooth functioning of your
business. Tally.ERP9 safeguards your data from any
loss due to power failure or improper shutdown of
the system.

3 Tally Audit

- Tally.ERP9 audit feature allows you to verify, validate
and accept accounting information based on the
masters, users and transactions (vouchers).

4 Split Company Data

- Tally.ERP9 allows splitting of company data into
multiple companies for the required financial period.
Once the data is split, the closing balances of the
previous period are automatically carried forward as
the opening balance for the subsequent period.

5 Import and Export of Data

- Tally.ERP9 allows you to flexibly export and import
data in various formats such as MS EXCEL, JPEG,
PDF, XML, HTML or ASCII format.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.3.121

Copyright Free under CC BY Licence

145

6 Graphical Analysis of Data

- Tally.ERP9 allows easy analysis of results / reports
with graphical representation of values.

7 Duties and Taxes

- Tally.ERP9 allows Statutory Reporting for VAT
(Value Added Tax), CST (Central Sales Tax), Service

Tax, TCS (Tax Collected all Source), TDS (Tax
Deducted at Source), FBT (Fringe Benefit Tax), GST
(Goods and Service Tax).

8 E-Mail Facility

- Tally.ERP9 supports mailing of required information
to intended recipients and also mass mailing facility
for certain reports like Payslip etc.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.3.121

Copyright Free under CC BY Licence

