
126

IT & ITES Related Theory for Exercise 2.2.117
COPA - Programming with VBA

User forms and control in Excel VBA
Objectives: At the end of this lesson you shall be able to
• define forms and controls in VBA
• describe the types of excel forms
• describe the properties, methods and events of forms.

Introduction to Forms and Controls

A form is a document designed with a standard structure
and format that makes it easier to enter, organize, and
edit information. Forms contain labels, textboxes, drop
down boxes and command buttons too.

By using forms and the many controls and objects that
you can add to them, you can significantly enhance data
entry on your worksheets and improve the way your
worksheets are displayed.

Types of Excel forms

There are several types of forms that you can create in
Excel: data forms, worksheets that contain Form and
ActiveX controls, and VBA UserForms.

Data form

A data form provides a convenient way to enter or display
one complete row of information in a range or table without
scrolling horizontally. You may find that using a data form
can make data entry easier than moving from column to
column when you have more columns of data than can be
viewed on the screen. Excel can automatically generate a
built-in data form for your range or table.

Worksheet with Form and ActiveX controls

A worksheet can be considered to be a form that enables
you to enter and view data on the grid.

For added flexibility, you can add controls and other drawing
objects to the worksheet, and combine and coordinate
them with worksheet cells. For example, you can use a
list box control to make it easier for a user to select from
a list of items. Or, you can use a spin button control to
make it easier for a user to enter a number.

You can display or view controls and objects alongside
associated text that is independent of row and column
boundaries without changing the layout of a grid or table
of data on your worksheet. Many of these controls can
also be linked to cells on the worksheet and do not require
VBA code to make them work. For example, you might
have a check box that you want to move together with its
underlying cell when the range is sorted. However, if you
have a list box that you want to keep in a specific location
at all times, you probably do not want it to move together
with its underlying cell.

Creating VBA Forms

A VBA form can be created from the code window. To
create a Form in VBA,click on Insert menu in the code
window and then click 'UserForm'. A UserForm1 appears
in the project window.

When you create or add a form, a module is also
automatically created for it. To access the module
associated with a form, you can right-click the form and
click View Code.Double Clicking on the Form or pressing
F7 will also open the Code window. Using Shift F7 will
again switch back to the Design Window.

The design time properties of the Form can be set by right
clicking on the form and selecting 'Properties'. The same
can be achieved by Clicking "F4" or the properties button
on the Form.Controls can be placed on the form from the
ToolBox as per requirement.

In addition, Controls can be added on the Form
programmatically / at run time using the "Add" method.
Similarly the controls can be removed from the form at run
time / programmatically using the "Remove" method. As
an example to add a checkbox control, we can write

Set cb1 = Controls.Add("Forms.CheckBox.1")

Some of the events and methods connected with the form
object are:

Events, Activate, Deactivate, Add Control, Remove Control,
Click, DblClick, Initialize, KeyPress, Resize, Scroll,
Terminate, Zoom etc.

Methods Copy, Paste, Hide, Move, Print Form, Repaint,
Scroll, Show etc .

The code needed to perform various operations on Forms
is given in Table 1.

A sample Form for data entry of students' details, marks
and results is shown in Fig. 1.

Necessary code can be attached to the Command Buttons
and other controls shown. After the user enters the data,
the total is calculated and the result is displayed. The
records can then be stored appropriately.

Copyright Free under CC BY Licence

127

Table 1

Userform VBA Code Action
Application

To Display a UserForm1.Show Displays the UserForm with name UserForm1. This code should be
UserForm inserted in a Standard VBA Module and not in the Code Module of the

UserForm. You can create a button in a worksheet, then right click to
assign macro to this button, and select the macro which shows the
UserForm.

Load a UserForm Load UserForm1 Load statement is useful in case of a complex UserForm that you
into memory but do want to load into memory so that it displays quickly on using the
not display Show method, which otherwise might take a longer time to appear.

Remove a User Unload UserForm1 Note: The Hide method (UserForm1.Hide) does not unload the
Form from memory UserForm from memory. To unload the UserForm from memory, the
/ Close UserForm Unload method should be used.

Unload Me Use the Me keyword in a procedure in the Code Module of the UserForm.

Hide a UserForm UserForm1.Hide Using the Hide method will temporarily hide the UserForm, but will not
close it and it will remain loaded in memory.

Print a UserForm UserForm1.PrintForm The PrintForm method sends the UserForm directly for printing.

Display UserForm UserForm1.Show False If the UserForm is displayed as Modeless, user can continue working
as Modeless in Excel while the UserForm continues to be shown. Omitting the

Boolean argument (False or 0) will display the UserForm as Modal, in
which case user cannot simultaneously work in Excel. By default
UserForm is displayed as Modal.

Close a UserForm Unload UserForm1 The Unload method closes the specified UserForm.

Unload Me The Unload method closes the UserForm within whose Code Module
it resides.

End Use the End statement in the "Close" CommandButton to close the
form. The "End" statement unloads all forms.

Specify UserForm UserForm1.Caption Caption is the text which describes and identifies a UserForm and will
Caption = "Bio Data" display in the header of the Userform.

Set UserForm UserForm1.Height
size = 250 Set Height of the UserForm, in points.

UserForm1.Width
= 350 Set Width of the UserForm, in points.

Set UserForm Position:

Left & Top UserForm1.Left = 30 Distance set is between the form and the Left or Top edge of the
 properties UserForm1.Top = 50 window that contains it, in pixels.

Move method UserForm1.Move Move method includes two arguments which are required - the Left
200, 50 distance and the Top distance, in that order.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.117

Copyright Free under CC BY Licence

128

Necessary code can be attached to the Command Buttons
and other controls shown. After the user enters the data,
the total is calculated and the result is displayed. The
records can then be stored appropriately.

Fig 1

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.117

Copyright Free under CC BY Licence

129

IT & ITES Related Theory for Exercise 2.2.118
COPA - Programming with VBA

Methods and Events in VBA
Objectives: At the end of this lesson you shall be able to
• explain VBA methods and events.

Methods and Events

Methods

A method is an action you perform with an object. A method
can change an object's properties or make the object do
something.

For example painting is a Method, building a new room is
a method in building a new house.

Similarly, if you want to select a range, you need Select
method. If you want to copy a range from one worksheet to
another worksheet you need Copy method to do it.

The following example Copies the data from Range A1 to
B5.

Enter the following code in the Module1 as shown in Fig 1

Sub sbExampleRangeMethods()
Range("A1").Select
Selection.Copy
Range("B5").Select
ActiveSheet.Paste
End Sub

Fig 1

If the above code is executed the content of cell A1 is
copied to Cell B5 as shown in the Fig 2.

Fig 2

Events

An Event is an action initiated either by user action or by
other VBA code. An Event Procedure is a Sub procedure
that you write, according to the specification of the event,
that is called automatically by Excel when an event
occurs. For example, a Worksheet object has an event
named Change. If you have properly programmed the
event procedure for the Change event, Excel will
automatically call that procedure, always named
Worksheet_Change and always in the code module of the
worksheet, whenever the value of any cell on the worksheet
is changed by user input or by other VBA code (but not if
the change in value is a result of a formula calculation).
You can write code in the Worksheet_Change event
procedure to take some action depending on which cell
was changed or based upon the newly changed value.

Enter the following code in the Worksheet_Change event
as shown in Fig 3.

Private Sub Worksheet_Change(ByVal Target
As Range)
MsgBox "Changed"
End Sub

Copyright Free under CC BY Licence

130

Fig 3

Fig 4

When we change content of any Cell the following message
will be displayed as shown in Fig 4.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.118

Copyright Free under CC BY Licence

131

IT & ITES Related Theory for Exercise 2.2.119
COPA - Programming with VBA

Debugging Techniques in VBA
Objectives: At the end of this lesson you shall be able to
• explain about VBA debugging
• explain how to set and clear the Breakpoints
• describe use of immediate window
• explain about watch window.

VBA Debugging

In Excel 2010, VBA’s debugging environment allows the
programmer to momentarily suspend the execution of VBA
code so that the following debug tasks can be done:

1 Check the value of a variable in its current state.

2 Enter VBA code in the Immediate window to view the
results.

3 Execute each line of code one at a time.

4 Continue execution of the code.

5 Halt execution of the code.

These are just some of the tasks that you might perform
in VBA’s debugging environment. (Fig 1)

Fig 1

Breakpoint in VBA

In Excel 2010, a breakpoint is a selected line of code that
once reached, the program will momentarily become
suspended. Once suspended, and to use VBA’s debugging
environment to view the status of program, step through
each successive line of code, continue execution of the
code, or halt execution of the code.

And create as many breakpoints in the code as you want.
Breakpoints are particularly useful when suspend the
program where you suspect a problem/bug exists.

Setting a Breakpoint

First, you need to open the VBA environment. The quickest
way to do this is by pressing Alt+F11 while the Excel
database file is open.
To set a breakpoint, find the line of code where to suspend
your program. Left-click in the grey bar to the left of the
code. A red dot should appear and the line of code should
be highlighted in red.

Clear Breakpoint in VBA

A breakpoint in VBA is indicated by a red dot with a line
of code highlighted in red.

To clear a breakpoint in Excel 2010, left-click on the red
dot next to the line of code that has the breakpoint.
(Fig 2)

Fig 2

In this example, we want to clear the breakpoint at the
following line of code:

LChar = Mid(pValue, LPos, 1) (Fig 3)

Now, the breakpoint is cleared and the line of code should
look normal again. (Fig 4)

Copyright Free under CC BY Licence

132

Fig 3

Fig 4

In this example, we’ve created a breakpoint at the following
line of code:

LChar = Mid(pValue, LPos, 1)

Now, the breakpoint is cleared and the line of code should
look normal again

Clearing all Breakpoints

If user use as many breakpoints as you want in Excel
2010, and can save time by clearing all breakpoints in the
VBA code at once.

To clear all breakpoints in the program, select “Clear All
Breakpoints” under the Debug menu. (Fig 5)

This will remove all breakpoints from the VBA code, so
that you don’t have to individually remove each breakpoint,
one by one.

Fig 5

Debug Mode

Now that we know how to set and clear breakpoints in
Excel 2010, let’s take a closer look at the debug mode
in VBA.

In our example, we’ve set our breakpoint and entered our
AlphaNumeric function as a formula in a cell. This will
cause the VBA code to execute. (Fig 6)

When the breakpoint is reached, Excel will display the
Microsoft Visual Basic window and highlight the line (in
yellow) where the code has been suspended. (Fig 7)

Fig 6

Fig 7

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.119

Copyright Free under CC BY Licence

133

Now we are in debug mode in our Excel spreadsheet.
Now we can do any of the following:

1 Check the value of a variable in its current state.

2 Enter VBA code in the Immediate window to view the
results.

3 Execute each line of code one at a time.

4 Continue execution of the code.

5 Halt execution of the code.

Using the Immediate Window

In Excel 2010, the Immediate window can be used to debug
your program by allowing you to enter and run VBA code
in the context of the suspended program. (Fig 8)

Fig 8

We’ve found the Immediate window to be the most help
when we need to find out the value of a variable, expression,
or object at a certain point in the program. This can be
done using the print command.

For example, if you wanted to check the current value of
the variable called pValue, you could use the print
command as follows: (Fig 9)

Fig 9

In this example, we typed print pValue in the Immediate
window and pressed ENTER.
Print pValue

The Immediate window displayed the result in the next
line. In this case, the print pValue command returned 123
Main St.

You can also type more complicated expressions in the
Immediate window. (Remember to press ENTER.) For
example: (Fig 10)

Fig 10

In this example, we typed print Mid(pValue, LPos, 1) in
the Immediate window and pressed ENTER.
print Mid(pValue, LPos, 1)

The Immediate window displayed the result of 1 in the
next line.

The Immediate window can be used to run other kinds of
VBA code, but bear in mind that the Immediate window
can only be used when debugging so any code that you
run is for debugging purposes only. The code entered in
the Immediate window does not get saved and added to
the existing VBA code

Adding a Watch Expression
The Watch Window displays the value of a watched
expression in its current state. This can be extremely
useful when debugging VBA code. Let’s explore how to
add an expression to the Watch Window.

To add a Watch expression, select Add Watch under the
Debug menu. (Fig 11)

When the Add Watch window appears, enter the
expression to watch and click the OK button when you
are done. (Fig 12)

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.119

Copyright Free under CC BY Licence

134

Fig 11 Fig 12

In this example, we’ve entered the following watch
expression in the Expression field:
Mid(pValue, LPos, 1)

Next, we’ve selected AlphaNumeric as the Procedure
and Module1 as the Module when setting up the Context
for the watched expression.

Finally, we’ve selected Watch Expression as the Watch
Type but there are 3 options to choose from:

Watch Type Description

Watch Expression To display the value of the watched expression in its current state

Break When Value Is True To stop the execution of the code when the value of the watched expression is
True

Break When Value Changes To stop the execution of the code when the value of the watched expression
changes

When return to the VBA window, the Watch Window will
automatically appear if it was previously hidden. Within
the Watch Window, all of the watched expressions should
be listed including the one that we just added. (Fig 13)

Fig 13

As you can see, the expression Mid(pValue, LPos, 1)
now appears in the Watch Window with a value of “1”.
Adding a watch is a great way to keep track of variables or
expressions of interest when debugging the VBA code.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.119

Copyright Free under CC BY Licence

