
115

IT & ITES Related Theory for Exercise 2.2.113
COPA - Programming with VBA

Built in Functions in VBA
Objectives: At the end of this lesson you shall be able to
• describe the math functions in VBA
• describe the logical functions in VBA
• describe the date/time functions in VBA
• describe the conversion functions in VBA.

Introduction

VBA has a rich collection of built in functions that perform
a variety of tasks and calculations for you. There are
functions to convert data types, perform calculations on
dates, perform simple to complex mathematics, make
financial calculations, manage text strings, format values,
and retrieve data from tables, among others. Using the
VBA Built in Functions will help coding much easier for
the user. We have already used many built in functions in
our earlier lessons like the msgbox function and many
string manipulation functions just to name a few.

MS Excel: VBA Functions (VBA Formulae) - Category
wise

The commonly used VBA functions in Excel, sorted by
Category are shown here.

String Functions: The string functions were already
discussed in the related theory for Ex. 2.2.09

Math Functions

Table 1 : Lists some of the common Built in Functions in
the Mathematical category.

Table 1

Function Name Description

Abs Returns the absolute value of a number.

Cos Returns the cosine of the specified angle.

Cosh Returns the hyperbolic cosine of the specified angle.

Exp Returns e (the base of natural logarithms) raised to the specified power.

Fix Returns the integer portion of a number.

Format Takes a numeric expression and returns it as a formatted string.

Int Returns the integer portion of a number.

Log Returns the natural (base e) logarithm of a specified number or the logarithm of a specified
number in a specified base.

Rnd Generates a random number (integer value)

Round Returns a Decimal or Double value rounded to the nearest integral value or to a specified
number of fractional digits.

Sign Returns an Integer value indicating the sign of a number.

Sin Returns the sine of the specified angle.

Sqr Returns the square root of a specified number.

Tan Returns the tangent of the specified angle.

Val Accepts a string as input and returns the numbers found in that string.

1 Dim a, b as integer

a=81

debug.print sqr(a)

This will display the square root of 81 ie. 9

Logical Functions

Table 2. lists some of the common Built in Functions in
the Logical category.

Copyright Free under CC BY Licence

116

Table 2

Function Name Description

ISDATE Returns TRUE if the expression is a valid date. Otherwise, it returns FALSE.

ISERROR Checks for error values.

ISNULL Returns TRUE if the expression is a null value. Otherwise, it returns FALSE.

ISNUMERIC Returns TRUE if the expression is a valid number. Otherwise, it returns FALSE.

Examples:

1 Sub Button1_Click()

N = TextBox1.Text

If IsNumeric(N) = True Then

MsgBox "correct"

Else

MsgBox "Insert only numbers"

End If

This checks if the data entered in the textbox is a
number or not.

2 Sub Button1_Click()

N = TextBox1.Text

If IsDate(N) = True Then

MsgBox "correct"

Else

MsgBox "Insert only dates"

 End If

End Sub

This checks if the data entered in the textbox is a valid
date or not.

Date / Time Functions

Table 3. lists some of the common Built in Functions in
the Date / Time category.

Table 3

Function Return Value

DATE Returns the current system date.

DATEADD Returns a date after which a certain time/date interval has been added.

DATEDIFF Returns the difference between two date values, based on the interval specified.

DATEPART Returns a specified part of a given date.

DATESERIAL Returns a date given a year, month, and day value.

DATEVALUE Returns the serial number of a date.

DAY Returns the day of the month (a number from 1 to 31) given a date value.

FORMAT Dates Takes a date expression and returns it as a formatted string.

HOUR Returns the hour of a time value (from 0 to 23).

MINUTE Returns the minute of a time value (from 0 to 59).

MONTH Returns the month (a number from 1 to 12) given a date value.

MONTHNAME Returns a string representing the month given a number from 1 to 12.

NOW Returns the current system date and time.

TIMESERIAL Returns a time given an hour, minute, and second value.

TIMEVALUE Returns the serial number of a time.

WEEKDAY Returns a number representing the day of the week, given a date value.

WEEKDAYNAME Returns a string representing the day of the week given a number from 1 to 7.

YEAR Returns the year portion of the date argument.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

117

Examples

1 DateDiff() Function
Syntax for the DateDiff function is :

DateDiff (interval, date1, date2, [firstdayofweek],
[firstweekofyear])

Parameters or Arguments

Interval is the interval of time to use to calculate the
difference between date1 and date2. Below is a list of
valid interval values as in Table 4

Table 4

Interval Explanation

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

Date1 and Date2 are the two dates to calculate the
difference between.

first day of week is optional. It is a constant that specifies
the first day of the week. If this parameter is omitted, Excel
assumes that Sunday is the first day of the week.

first week of year is optional. It is a constant that specifies
the first week of the year. If this parameter is omitted,
Excel assumes that the week containing Jan 1st is the
first week of the year.

Sub test()

Debug.PrintDateDiff("yyyy", "1/12/1999", "31/1/2000")

Debug.PrintDateDiff("q", "1/12/1999", "31/1/2000")

Debug.PrintDateDiff("m", "1/12/1999", "31/1/2000")

End Sub

The result will be

1

4

12

2 Format Date

Syntax

The syntax for the Microsoft Excel FORMAT function is:

Format (expression, [format, [firstdayofweek,
[firstweekofyear]]])

Parameters or Arguments

Expression is the value to format.

Format is optional. It is the format to apply to the
expression. You can either define your own format or use
one of the named formats that Excel has predefined such
as shown in Table 5.

Table 5

Format Explanation

General Date Displays date based on your
system settings

Long Date Displays date based on your
system's long date setting

Medium Date Displays date based on your
system's medium date setting

Short Date Displays date based on your
system's short date setting

Long Time Displays time based on your
system's long time setting

Medium Time Displays time based on your
system's medium time setting

Short Time Displays time based on your
system's short time setting

First day of week is optional. It is a value that specifies
the first day of the week. If this parameter is omitted, the
FORMAT function assumes that Sunday is the first day of
the week. This parameter can be one of the following values
as shown in Table 6.

First week of year is optional. It is a value that specifies
the first week of the year. If this parameter is omitted, the
FORMAT function assumes that the week that contains
January 1 is the first week of the year. This parameter can
be one of the following values as shown in Table 7.

Sub test()

Debug.Print Format(#1/1/1990#, "Short Date")

Debug.Print Format(#1/1/1990#, "Long Date")

Debug.Print Format(#1/1/1990#, "yyyy/mm/dd")

End Sub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

118

Table 6

Constant Value Explanation

vbUseSystem 0 Uses the NLS API setting

VbSunday 1 Sunday (default, if
parameter is omitted)

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Table 7

Constant Value Explanation

vbUseSystem 0 Uses the NLS API setting

vbFirstJan1 1 The week that contains
January 1

vbFirstFourDays 2 The first week that has at
least 4 days in the year

vbFirstFullWeek 3 The first full week of the
year

The result will be

1/1/1990

Monday, January 01, 1990

1990/01/01

Data Type Conversion Functions

Table 8. below lists some of the common Built in Functions
in the Data Type Conversion category.

Table 8

Function Return Type Range for expression argument

CBool Boolean Any valid string or numeric expression.

CByte Byte 0 to 255.

CCur Currency -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

CDate Date Any valid date expression.

CDbl Double -1.79769313486231E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E- 324 to 1.79769313486232E308 for positive values.

CDec Decimal +/-79,228,162,514,264,337,593,543,950,335 for zero-scaled numbers,
that is, numbers with no decimal places. For numbers with 28 decimal
places, the range is +/-7.9228162514264337593543950335. The smallest
possible non-zero number is 0.0000000000000000000000000001.

CInt Integer -32,768 to 32,767; fractions are rounded.

CLng Long -2,147,483,648 to 2,147,483,647; fractions are rounded.

CSng Single -3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45
to 3.402823E38 for positive values.

CStr String Returns for CStr depend on the expression argument.

CVar Variant Same range as Double for numerics. Same range as String for non-numerics.

Example
CDate function

Sub test()

Dim lNum As Long

Dim a As String

a = 12345

Debug.PrintCDate(a)

b = "January 1, 1990"

Debug.PrintCDate(b)

c = "1:23:45 PM"

Debug.PrintCDate(c)

End Sub

This will display

10/18/1933

1/1/1990

1:23:45 PM

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.113

Copyright Free under CC BY Licence

119

IT & ITES Related Theory for Exercise 2.2.114 & 2.2.115
COPA - Programming with VBA

User defined functions in VBA
Objectives: At the end of this lesson you shall be able to
• create user defined functions
• describe passing values to functions byval and byref
• describe using arrays with functions
• describe the scope of variables
• describe the access specifiers public and private.

Introduction

In Excel Visual Basic too, like in most programming
languages, a set of commands to perform a specific task
is placed into a procedure, which can be a function or a
subroutine. The main difference between a VBA function
and a VBA subroutine is that a function (generally) returns
a result, whereas a subroutine does not.

Therefore, if you wish to perform a task that returns a
result (ex. summing of a group of numbers), you will
generally use a function, but if you just need a set of actions
to be carried out (ex. formatting a set of cells), you might
choose to use a subroutine.

User Defined Functions

One of the most power features of Excel VBA is that you
can create your own functions or UDFs. A UDF (User
Defined Function) is simply a function that you create
yourself with VBA for your own defined tasks. UDFs are
often called "Custom Functions". A UDF can remain in a
code module attached to a workbook, in which case it will
always be available when that workbook is open.
Alternatively you can create your own add-in containing
one or more functions that you can install into Excel. Here
the user-defined functions can be entered into any cell or
on the formula bar of the spreadsheet just like entering
the built-in formulas of the MS Excel spreadsheet.

Custom functions, like macros, use the Visual Basic for
Applications (VBA) programming language. They differ from
macros in two significant ways. First, they use function
procedures instead of sub procedures. They start with a
Function statement instead of a Sub statement and end
with End Function instead of End Sub. Second, they
perform calculations instead of taking actions. Certain
kinds of statements (such as statements that select and
format ranges) are generally excluded from custom
functions.

A simple function may look like this:

Function area()

Dim l, b

l = 10

b = 20

Debug.Print "area Is " & l * b

End Function

When executed from the immediate window this function
displays the area.

Alternately this function can be called by another
subroutine, for ex.

Sub test_fn()

Call area

End Sub

Returning a value from the procedures

In the example given below, the area() function calculates
l*b.

The subroutine that calls this function is returned this value.

Sub test_fn()

Debug.Print "The function has returned the value " & area

End Sub

Function area()

Dim l, b, A

l = 10

b = 20

area = l * b

End Function

The result will be:The function has returned the value 200

Passing Arguments to functions

We can pass the arguments in two different ways:

Copyright Free under CC BY Licence

120

1 By Value (ByVal): We pass the copy of the actual value
to the arguments

2 By Reference (ByRef): We pass the reference to the
arguments

By Ref is the default method of passing argument type in
VBA. This means, if you are not specifying any type of
the argument it will consider it as ByRef type. However, it
is always a good practice to specify the ByRef even if it is
not mandatory.

The following example shows the method of passing
variables to a function byVal.

Sub test_fn()

Dim a, b As Integer

a = 4

b = multiply(a)

Debug.Print "a is " & a

Debug.Print "The function has returned the value " & b

End Sub

Function multiply(ByVal a As Integer)

a = a * 10

multiply = a

End Function

The result of this program will be :

a is 4

The function has returned the value 40

a is 4

This means that the value of the variable that was passed
is not disturbed by the function.

The following example shows the method of passing
variables to a function byRef.

Sub Test()

Dim A As Integer

A = 10

Debug.Print "The function has returned the value " &
Modify(A)

Debug.Print "A is now " & A

End Sub

Function Modify(ByRef A As Integer)

A = A * 2

 Modify = A

End Function

The result will be:

The function has returned the value 20

A is now 20

Calling a User Defined Function from Worksheet:

You call the user defined functions as similar to the built-
in excel function. To do this type the arguments in the
cells and type the name of the function as is done with
normal functions in Excel.

Passing Arrays to User Defined functions

A Function can accept an array as an input parameter.
Arrays are always passed by reference (ByRef). You will
receive a compiler error if you attempt to pass an array
ByVal. This means that any modification that the called
procedure does to the array parameter is done on the
actual array declared in the calling procedure.

(If you need to pass an array ByVal then you would need
to use the Variant data type.)

An example of passing an array to a function is as follows:

Sub test()

Dim arr(1 To 10) As Integer

Dim i As Integer

'populates the array with the values 1 to 10

For i = 1 To 10

arr(i) = i

Next i

'call the function example 1 with arrIntegers as an input
parameter

Call fn1(arr)

For i = 1 To 10

Debug.Print arr(i); Spc(2);

Next i

End Sub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

121

'prints the values in arrIntegers to column A

Sub fn1(ByRef arr() As Integer)

Dim i As Integer

For i = LBound(arr) To UBound(arr)

 arr (i) = arr (i) * 2

 Cells (i,1) = arr (i)

Next i

End Sub

Scope of variables

The term Scope is used to describe how a variable may
be accessed. Depending on where and how a variable is
declared, it may be accessible only to a single procedure,
to all procedures within a module, and so on up the
hierarchy of a project or group of related projects. The
term visibilty is also is sometimes used to describe scope.

There are four levels of Scope:

• Procedure-Level Scope

• Module-Level Scope

• Project-Level Scope

• Global-Level Scope

Fig 1 shows the various scopes and their levels.

Procedure (local) scope

A local variable with procedure scope is recognized only
within the procedure in which it is declared. A local variable
can be declared with a Dim or Static statement.

When a local variable is declared with the Dim statement,
the variable remains in existence only as long as the
procedure in which it is declared is running. Usually, when
the procedure is finished running, the values of the
procedure's local variables are not preserved, and the
memory allocated to those variables is released. The next
time the procedure is executed, all of its local variables
are reinitialized.

For Example the following subroutine has been created in
Module1 code.

Sub disp()

Dim s As string

s="hello"

MsgBox s

End Sub

Run the subroutine "disp" in Module1 and it will display
the message "Hello" in the message box.

Now the following subroutine has been created in Sheet1
code to call the disp() subroutine from Module1.

Sub Button1_Click()

disp

End Sub

This will generate an error since the subroutine disp() and
the variable s are local to Module1 and cannot be accessed
from elsewhere.

Static:

A local variable declared with the Static statement remains
in existence the entire time Visual Basic is running. The
variable is reset when any of the following occur:

• The macro generates an untrapped run-time error.

• Visual Basic is halted.

• You quit Microsoft Excel.

• You change the module.

For example, in the FindTotal example, the Accumulate
variable retains its value every time it is executed. The
first time the module is run, if you enter the number 2, the
message box will display the value "2." The next time the
module is run, if the value 3 is entered, the message box
will display the running total value to be 5.

Sub FindTotal()

Static Total

Dim n as integer

n =InputBox("Enter a number: ")

Total = Total + n

MsgBox "The total is " &n

End Sub

Procedure scope

Global scope

Project scope

Module scope

Fig 1

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

122

Module scope

A variable that is recognized among all of the procedures
on a module sheet is called a "module-level" variable. A
module-level variable is available to all of the procedures
in that module, but it is not available to procedures in
other modules. A module-level variable remains in existence
while Visual Basic is running until the module in which it
is declared is edited. Module-level variables can be
declared with a Dim or Private statement at the top of the
module above the first procedure definition.

At the module level, there is no difference between Dim
and Private. Note that module-level variables cannot be
declared within a procedure.

Note If you use Private instead of Dim for module-level
variables, your code may be easier to read (that is, if you
use Dim for local variables only, and Private for module-
level variables, the scope of a particular variable will be
more clear).

In the following example, two variables, A and B, are
declared at the module level. These two variables are
available to any of the procedures on the module sheet.
The third variable, C, which is declared in the Example3
macro, is a local variable and is only available to that
procedure.

Note that in Test4, when the macro tries to use the variable
C, the message box is empty. The message box is empty
because C is a local variable and is not available to Test4,
whereas variables A and B are.

Dim A As Integer ' Module-level variable.

Private B As Integer ' Module-level variable.

Sub Test1()

A = 10

B = A * 10

End Sub

Sub Test2()

MsgBox "The value of A is " & A

MsgBox "The value of B is " & B

End Sub

Sub Test3()

Dim C As Integer ' Local variable.

C = A + B

MsgBox "The value of C is " & C

End Sub

Sub Test4()

MsgBox A

MsgBox B

MsgBox C

 ' The message box is blank since C is a local variable.

End Sub

Project Scope

Project scope variables are those declared using the Public
keyword. These variables are accessible from any
procedure in any module in the project. In Excel, a Project
is all of the code modules, userforms, class modules, and
object modules (e.g. ThisWorkbook and Sheet1) that are
contained within a workbook.

In order to make a variable accessible from anywhere in
the project, you must use the Public keyword in the
declaration of the variable. However, this makes the variable
accessible to any other project that reference the project
containing the variable. If you want a variable to be
accessible from anywhere within the project, but not
accessible from another project, you need to use Option
Private Module as the first line in the module (above and
outside of any variable declaration or procedure). This option
makes everything in the module accessible only from within
the project. The project variables that should not be
accessible to other projects should be declared in a module
that has the Option Private Module directive. Variables
that should be accessible to other project should be
declared in a different module that does not use the Option
Private Module directive. In both cases, however, you need
to use the Public keyword.

Global Scope

Global scope variables are those that are accessible from
anywhere in the project that declares them as well as any
other project that references the first project. To declare a
variable with global scope, you need to declare it using
the Public keyword in a module that does not use the
Option Private Module directive. In order to access variables
in another project, you can simply use the variable's name.
If, however, it is possible that the calling project also has a
variable by the same name, you need to prefix the variable
name with the project name. For example, if Project1
declares a global variable named x, and Project2 references
Project1, code that is in Project2 can access x with either
of the following lines of code:

x = 78

Project1.x = 78

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

123

If both Project1 and Project2 have variables with at least
project scope, you need to include the project name with
the variable. For clarity and maintainability, you should
always include the project name when accessing a variable
that is declared in another project. Even if this is not
necessary, it makes the code more readable and
maintainable.

There is no way to give some variables project, but not
global, scope and give others in the same module global
scope. Project versus global scope is handled only at the
module level, not at the variable level.

The Access Specifiers

One of the techniques in object-oriented programming is
encapsulation. It concerns the hiding of data in a class
and making them available only through its methods. Most
programming languages implementing OOPS allow you to
control access to classes, methods, and fields via so-called
access modifiers. The access to classes, constructors,
methods and fields are regulated using access modifiers
i.e. a class can control what information or data can be
accessible by other classes. The VBA access specifiers
are:

1 Private

2 Public

A Public procedure is accessible to all code inside the
module and all code outside the module, essentially
making it global. A VBA Private Sub can only be called
from anywhere in the Module in which it resides. A Public
Sub in the objects, ThisWorkbook, ThisDocument, Sheet1,
etc. cannot be called from anywhere in a project. However,
if you declare a Module level variable with the Public
Keyword it can be used anywhere in the project and retains
its value.

If you exclude the key word private in your declaration then
by default the procedure is public. So Sub MySub()
and Public Sub MySub() are exactly the same thing.

Public [variable] means that the variable can be accessed
or used by subroutines in outside modules. These variables
must be declared outside of a subroutine (usually at the
very top of your module). You can use this type of variable
when you have one subroutine generating a value and you
want to pass that value on to another subroutine stored in
a separate module.

A Private procedure is only available to the current module.
It cannot be accessed from any other modules, or from the
Excel workbook.Private Sub sets the scope so that
subroutines from outside modules cannot call that particular
subroutine. This means that a sub in Module 1 could not
use the Call method to initiate a Private Sub in Module 2.

Private [variable] means that the variable cannot be
accessed or used by subroutines in other modules. In
order to be used, these variables must be declared outside

of a subroutine (usually at the very top of your module).
You can use this type of variable when you have one
subroutine generating a value and you want to pass that
value on to another subroutine in the same module.

Dim[variable] is used to state the scope inside of a
subroutine (you cannot use Private in its place). Dim can
be used either inside a subroutine or outside a subroutine
(using it outside a subroutine would be the same as using
Private).

Example of Public, Private Variables and Procedures.

Module 1 code

Dim x As Integer ' This is a Private Variable since it is
declared using Dim.

Public y As Integer

Sub First_Sub()

 x = 10

 y = 20

 Call Third_Sub()

End Sub

Private Sub Second_Sub()

MsgBox "Gone through First, Second and Third
Subroutines !"

End Sub

Module 2 code

Sub Third_Sub()

Debug.Print x

Debug.Print y

Call Second_Sub()

End Sub

The two variables x and y that are declared outside a
subroutine. This means that their values can carry over
into other macros. The variable x has a private scope so
only subroutines in the same module can access its value.
The variable y has a public scope, meaning that
subroutines inside and outside its module can access its
value.

The First_Sub() assigns values to x and y and then initiates
the Third_Sub().

Third_Sub() can be called even though it is not in the same
module because it is a Public Sub.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

124

The Third_Sub() has been designed to display the values
of x and y in the immediate window. When you try to print
variable x it outputs nothing. This is because x does not
exist in Module 2. Therefore, a new variable x is created
in Module 2 and since we did not give this new x a value,
nothing is printed for the statement Debug.Print x

When we print the value of the variable y, 12 is displayed
in the Immediate Window. This is because Module 2
subroutines have access to the public variables declared
in Module 1.But the statement "Call Second_Sub()" in the
Third_Sub() will result in an error. This is because we are

trying to call a private subroutine " Second_Sub" from here.
The following changes can be done to avoid this:

1 We could remove the word "Private" from
Display_Message

2 We could replace "Private" with "Public" in
Second_Sub()

3 We can use the Application level and instead of using
Call we could write Application.Run "Second_Sub " (this
method serves as an override in case we wanted to
keep Second_Sub private for subroutines outside the
module.)

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.114 & 2.2.115

Copyright Free under CC BY Licence

125

IT & ITES Related Theory for Exercise 2.2.116
COPA - Programming with VBA

Create and Edit Macros
Objective: At the end of this lesson you shall be able t0
• explain about Macros in VBA.

Macros offer a powerful and flexible way to extend the
features of Excel. They allow the automation of repetitive
tasks such as printing, formatting, configuring, or
otherwise manipulating data in Excel. In its’ simplest form,
a macro is a recording of your keystrokes. While macros
represent one of the stronger features found in Excel, they
are rather easy to create and use. There are six major
points that I like to make about macros as follows.

1 Record, Use Excel, Stop Recording

To create a macro, simply turn on the macro recorder,
use Excel as you normally do, then turn off the recorder.
Presto – you have created a macro. While the
process is simple from the user’s point of view,
underneath the covers Excel creates a Visual Basic
subroutine using sophisticated Visual Basic
programming commands.

2 Macro Location

Macros can be stored in either of two locations,
as follows:

The workbook you are using, or the Personal Macro
Workbook (which by default is hidden from view) If
the macro applies to all workbooks, then store it
in the Personal Macro Workbook so it will always be
available in all of the Excel workbooks; otherwise store
it in the current workbook. A macro stored in the current
workbook will embedded and included in the
workbook, even if you email the workbook to
another user.

3 Assign the Macro to an Icon, Text or a Button
To make it easy to run your macro, you should assign
it to a toolbar icon so it will always be available no
matter which workbooks you have open. If the macro
applies only to the current workbook, then assign it to
Text or a macro Button so it will be quickly available in
the current workbook.

4 Absolute versus Relative Macros
An “Absolute” macro will always affect the same cells
each time whereas a “Relative” macro will affect those
cells relative to where the cursor is positioned when
invoke the macro. It is crucial that understand the
difference.

5 Editing Macros
Once created, you can view and/or edit your macro
using the View Macros option. This will open the macro
subroutine in a Visual basic programming window and
provide you with a plethora of VB tools.

6 Advanced Visual Basic Programming

For the truly ambitious CPA, in the Visual Basic
Programming window, you have the necessary tools
you need to build very sophisticated macros with dialog
boxes, drop down menu options, check boxes, radio
buttons – the whole works. To see all of this power,
turn on the “Developer Tab” in “Excel Options”.
Presented below are more detailed comments and
stepbystep instructions for creating and invoking
macros, followed by some example macros.

Page Setup Macro Start recording a new macro called
page setup. Select all of the worksheets and then choose
Page Setup and customize the header and footers to
include page numbers, date and time stamps, file locations,
tab names, etc. Assign the macro to an Icon onthe toolbar
or Quick Access Bar and insetting headers and footers
will be a breeze for the rest of your life.

Print Macros Do you have a template that print frequently
from? If so, insert several macro buttons to print each
report, a group of reports, and even multiple reports and
reporting will be snap in the future.

Delete Data Macro create a macro that visits each cell
and erases that data, resetting the worksheet for use in a
new set of criteria. Assign the macro to a macro
button and will never again have old assumptions
mixed in with your newer template

Copyright Free under CC BY Licence

