
14

IT & ITES Related Theory for Exercise 2.1.97A & 2.1.97B
COPA - JavaScript and creating Web page

Control statements, Loops and Popup boxes in JavaScript
Objectives : At the end of this lesson you shall be able to
• explain control statements
• discuss about various Loops
• explain the uses of Popup boxes.

Control Statements: When we write code for a particular
program, we sometimes takes various decisions for
executing different action. These can be done through
conditional/control statements.

In JavaScript we have the following conditional statements:

Use if to specify a block of code to be executed, if a
specified condition is true

Use else to specify a block of code to be executed, if the
same condition is false

Use else if to specify a new condition to test, if the first
condition is false

Use switch to specify many alternative blocks of code to
be executed.

The if Statement

Use the if statement to specify a block of JavaScript code
to be executed if a condition is true.

Syntax

If (condition) {

 block of code to be executed if the condition is true

}

Example 1

Make a "Good day" greeting if the time is less than 18:00:

if (time < 18) {

 greeting = "Good day";

}

The result of greeting will be:

Good day

The else Statement

Use the else statement to specify a block of code to be
executed if the condition is false.

if (condition) {

 block of code to be executed if the condition is true

} else {

 block of code to be executed if the condition is false

}

Example 2

If the time is less than 18:00, create a "Good day" greeting,
otherwise "Good evening":

if (time < 18) {

 greeting = "Good day";

} else {

 greeting = "Good evening";

}

The result of greeting will be:

Good day

The else if Statement

Use the else if statement to specify a new condition if the
first condition is false.

Syntax
if (condition1) {

 block of code to be executed if condition1 is true

} else if (condition2) {

 block of code to be executed if the condition1 is false
and condition2 is true

} else {

 block of code to be executed if the condition1 is false
and condition2 is false

}

Example 3

If time is less than 10:00, create a "Good morning"
greeting, if not, but time is less than 18:00, create a "Good
day" greeting, otherwise a "Good evening":

if (time < 10) {

 greeting = "Good morning";

} else if (time < 18) {

 greeting = "Good day";

} else {

Copyright Free under CC BY Licence

15

 greeting = "Good evening";

}

The result of x will be:

Good day

The JavaScript Switch Statement

Use the switch statement to select one of many blocks of
code to be executed.

Syntax

switch(expression) {

 case n1:

 code block

 break;

 case n2:

 code block

 break;

 default:

 default code block

}

This is how it works:

• The switch expression is evaluated once.

• The value of the expression is compared with the values
of each case.

• If there is a match, the associated block of code is
executed.

Example 4

Use today's weekday number to calculate weekday name:
(Sunday=0, Monday=1, Tuesday=2, ...)

switch (new Date().getDay()) {

 case 0:

 day = "Sunday";

 break;

 case 1:

 day = "Monday";

 break;

 case 2:

 day = "Tuesday";

 break;

 case 3:

 day = "Wednesday";

 break;

 case 4:

 day = "Thursday";

 break;

 case 5:

 day = "Friday";

 break;

 case 6:

 day = "Saturday";

 break;

}

The result of day will be:

Tuesday

The break Keyword

When the JavaScript code interpreter reaches a break
keyword, it breaks out of the switch block.

This will stop the execution of more execution of code
and/or case testing inside the block.

The default Keyword

The default keyword specifies the code to run if there is no
case match:

Example 5

If today is neither Saturday nor Sunday, write a default
message:

switch (new Date().getDay()) {

 case 6:

 text = "Today is Saturday";

 break;

 case 0:

 text = "Today is Sunday";

 break;

 default:

 text = "Looking forward to the Weekend";

}

The result of text will be:

Looking forward to the Weekend

Common Code and Fall-Through

Sometimes, in a switch block, you will want different cases
to use the same code, or fall-through to a common default.

Note from the next example, that cases can share the
same code block and that the default case does not have
to be the last case in a switch block:

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.1.97A & 2.1.97B

Copyright Free under CC BY Licence

16

Example 6

switch (new Date().getDay()) {

 case 1:

 case 2:

 case 3:

 default:

 text = "Weekend is coming";

 break;

 case 4:

 case 5:

 text = "Weekend is soon";

 break;

 case 0:

 case 6:

 text = "Now in Weekend";

}

JavaScript Loops

Loops are handy, if you want to run the same code over
and over again, each time with a different value.

Often this is the case when working with arrays:

Instead of writing:

text += train[0] + "
";

text += train [1] + "
";

text += train [2] + "
";

text += train [3] + "
";

text += train [4] + "
";

text += train [5] + "
";

You can write:

for (i = 0; i < train.length; i++) {

 text += train [i] + "
";

}

Different Kinds of Loops

JavaScript supports different kinds of loops:

• for - loops through a block of code a number of times

• for/in - loops through the properties of an object

• while - loops through a block of code while a specified
condition is true

• do/while - also loops through a block of code while a
specified condition is true

The For Loop

The for loop is often the tool you will use when you want to
create a loop.

The for loop has the following syntax:

for (statement 1; statement 2; statement 3) {

 code block to be executed

}

Statement 1 is executed before the loop (the code block)
starts. It is called Initialisation Part

Statement 2 defines the condition for running the loop (the
code block).It is called condition part.

Statement 3 is executed each time after the loop (the
code block) has been executed. It is called increment/
decrement part.

Example 7

for (i = 0; i < 5; i++) {

 text += "The number is " + i + "
";

}

From the example above, you can read:

Statement 1 sets a variable before the loop starts
(var i = 0).

Statement 2 defines the condition for the loop to run
(i must be less than 5).

Statement 3 increases a value (i++) each time the code
block in the loop has been executed.

Initialisation Part

Normally you will use statement 1 to initiate the variable
used in the loop (var i = 0).

This is not always the case, JavaScript doesn't care.
Statement 1 is optional.

You can initiate many values in statement 1 (separated
by comma):

Example 8

for (i = 0, len = train.length, text = ""; i < len; i++) {

 text += train [i] + "
";

}

And you can omit statement 1 (like when your values are
set before the loop starts):

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.1.97A & 2.1.97B

Copyright Free under CC BY Licence

17

Example 9

var i = 2;

var len = train.length;

var text = "";

for (; i < len; i++) {

 text += train [i] + "
";

}

Condition Part

Often statement 2 is used to evaluate the condition of the
initial variable.

This is not always the case, JavaScript doesn't care.
Statement 2 is also optional.

If statement 2 returns true, the loop will start over again, if
it returns false, the loop will end.

If you omit statement 2, you must provide a break inside
the loop. Otherwise the loop will never end. This will crash
your browser. Read about breaks in a later chapter of this
tutorial.

Increment/Decrement Part

Often statement 3 increases the initial variable.

This is not always the case, JavaScript doesn't care, and
statement 3 is optional.

Statement 3 can do anything like negative increment (i--),
or larger increment (i = i + 15), or anything else.

Statement 3 can also be omitted (like when you increment
your values inside the loop):

Example 10

var i = 0;

len = train.length;

for (; i < len;) {

 text += train [i] + "
";

 i++;

}

For/In Loop

The JavaScript for/in statement loops through the properties
of an object:

var person = {fname:"Raja", lname:"Sen", age:35};

var text = "";

var x;

for (x in person) {

 text += person[x];

}

While Loop

The while loop loops through a block of code as long as a
specified condition is true.

Syntax
while (condition) {

 code block to be executed

}

In the following example, the code in the loop will run, over
and over again, as long as a variable (i) is less than 10:

Example 11

while (i < 10) {

 text += "The number is " + i;

 i++;

}

If you forget to increase the variable used in the condition,
the loop will never end. This will crash your browser.

The Do/While Loop

The do/while loop is a variant of the while loop. This loop
will execute the code block once, before checking if the
condition is true, then it will repeat the loop as long as the
condition is true.

Syntax

do {

 code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will
always be executed at least once, even if the condition is
false, because the code block is executed before the
condition is tested:

Example 12

do {

 text += "The number is " + i;

 i++;

}

while (i < 10);

Do not forget to increase the variable used in the condition,
otherwise the loop will never end!

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.1.97A & 2.1.97B

Copyright Free under CC BY Licence

18

Comparing For and While

If you have read the previous chapter, about the for loop,
you will discover that a while loop is much the same as a
for loop, with statement 1 and statement 3 omitted.

The loop in this example uses a for loop to collect the car
names from the train array:

Example 13

train = ["Duronto","Satabdi","Garib Rath","Rajdhani"];

var i = 0;

var text = "";

for (;train[i];) {

 text += train[i] + "
";

 i++;

}

The loop in this example uses a while loop to collect the
car names from the train array:

train = ["Duronto","Satabdi","Garib Rath","Rajdhani"];

var i = 0;

var text = "";

while (train[i]) {

text += train[i] + "
";

 i++;

}

The Break Statement in Loop

Break statement is used to terminate a loop before its
completion. It saves machine time for not iterating a loop
uselessly.

For example: In linear search, if we find the item then we
can break the loop as no point of runnign it unnecessary.

Example 14

for(i=0;i<l;i++ {

if(arr[i]==item) {

alert("Found at :"+i);

fl=1;

break;

}

if(fl==0) alert("Not Found");

Here, if the item is found, loop breaks and CPU time is
saved.

Popup Boxes
JavaScript has three kind of popup boxes. They are

1 Alert box

2 Confirm box and

3 Prompt box.

Alert Box

An alert box is often used if you want to make sure
information comes through to the user. When an alert box
pops up, the user will have to click “OK” to proceed.

Syntax

window.alert(“sometext”);

Note: The window.alert() method can be written
without the window prefix.

Example 15

alert (“Welcome to Java Script Coding!;)

The result is shown in Fig 1.
Fig 1

Confirm Box
A confirm box is often used to verify or accept
something.When a confirm box pops up, the user will have
to click either “OK” or “Cancel” to proceed.If the user clicks
“OK”, the box returns true. If the user clicks “Cancel”, the
box returns false.

Syntax
window.confirm(“sometext”);

Note: The window.confirm() method can be
written without the window prefix.

Example 16

if (confirm(“Click a button!”))

{

txt = “ You clicked OK!”;

}

else

{
txt = “You clicked Cancel!”;

}
IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.1.97A & 2.1.97B

Copyright Free under CC BY Licence

19

The result is is shown in Fig 2.

Fig 3

Fig 4

Fig 5

Fig 2

Note: When click on OK button it displays the
message “You clicked OK!” and when click on
Cancel button it displays the message “You
clicked Cancel!”

Prompt Box

A prompt box is often used if the user to input a value
before entering a page.When a prompt box pops up, the
user will have to click either “OK” or “Cancel” to proceed
after entering an input value.If the user clicks “OK” the box
returns the input value. If the user clicks “Cancel” the box
returns null.

Syntax

window.prompt(“sometext”,”default text”);

Note: The window.prompt() method can be
written without the window prefix.

Example 17

var tname = promp t(“Please Enter your Name”, “Lakshmi”);

if (tname == null || tname == “”)

 {txt = “User cancelled the prompt.”;
}

else

 {txt = “Hello “ + tname + “! Congratulations!!!!!”);

}

The result is is shown in Fig 3.

Note: If click on OK button it displays the
message “Hello Lakshmi! Congratulations!!!!!”
If cancelled the name ‘Lakshmi’ as shown in
Fig 4 it gives the message “User cancelled the
Prompt”. Also whenclick the Cancel button
even when if the box has text ‘Lakshmi’ it gives
the message “User cancelled the Prompt”.

Line Breaks

To display line breaks inside a popup box, use a back-
slash followed by the character n.

Example 18

alert(“Hello\nWelcome!”);

The result is shown in Fig 5.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.1.97A & 2.1.97B

Copyright Free under CC BY Licence

97

Introduction

Many applications depend on data input from users to
take the necessary action. Excel VBA has very useful
functions that allow you to gather user input for your
applications. VBA allows you to create message boxes,
user input forms and input boxes to get user input.VBA
message boxes provide a way to give information to a
user and get information from a user while the program is
running. The input Box function can be used to prompt the
user to enter a value.

Message Box

In VBA Message Boxes fall into two basic categories, the
MsgBox method and the MsgBox function.

The MsgBox Method

The message box method is used to display a pre- defined
message to the user. It also contains a single command
button "OK" to allow the user to dismiss the message
and they must do so before they can continue working in
the program.

The basic form of the Message Box (msgbox) in VBAis
:Msgbox("message")

Example:

Sub result()

Msgbox("congratulations")

End sub

This displays a message box as shown in Fig 1

Customize the buttons in a VBA message box

The Msgbox() can be customized by changing the buttons
and icons placed on it.

A list of various buttons and icons that can be used in the
VBA message box is shown in the Table 1.

For ex. to add an icon and a title to the Msgbox() we can
write the following code

Sub test()

Dim n As Integer

n = MsgBox("Congratulations", vbExclamation, "result")

End Sub

This will produce the following result as in Fig 2.

The MsgBox Function

The MsgBox Function displays a message in a dialog
box, waits for the user to click a button, and then returns
an integer indicating which button was clicked by the
user.The syntax of the Msgbox() function is :

Return value = MsgBox(Prompt, Button and Icon types,
Title, Help File, Help File Context)

IT & ITES Related Theory for Exercise 2.2.108
COPA - Programming with VBA

VBA Message boxes and Input boxes
Objectives: At the end of this lesson you shall be able to
• state the uses of message boxes and input boxes in VBA
• describe the msgbox method and msgbox function
• describe the inputbox method and inputbox function.

Fig 1

Fig 2

Copyright Free under CC BY Licence

98

Constant Description

vbOKOnly It displays a single OK button

vbOKCancel It displays two buttons OK and Cancel.

vbAbortRetryIgnore It displays three buttons Abort, Retry, and Ignore.

vbYesNoCancel It displays three buttons Yes, No, and Cancel.

vbYesNo It displays two buttons Yes and No.

vbRetryCancel It displays two buttons Retry and Cancel.

vbCritical It displays a Critical Message icon.

vbQuestion It displays a Query icon.

vbExclamation It displays a Warning Message icon.

vbInformation It displays an Information Message icon.

vbDefaultButton1 First button is treated as default.

vbDefaultButton2 Second button is treated as default.

vbDefaultButton3 Third button is treated as default.

vbDefaultButton4 Fourth button is treated as default.

vbApplicationModal This suspends the current application till the user responds to the
message box.

vbSystemModal This suspends all the applications till the user responds to the message box.

vbMsgBoxHelpButton This adds a Help button to the message box.

VbMsgBoxSetForeground Ensures that message box window is foreground.

vbMsgBoxRight This sets the Text to right aligned

vbMsgBoxRtlReading This option specifies that text should appear as right-to-left.

Table 1

Where:

Return Value: Indicates the action the user took when
the message box was shown to him/her.

Prompt : It is the message contained in the main body of
the message box.

Button and Icon Types : This specifies the set of buttons
& Icons and their placement as they would appear to the
user.

Help File : This is the path to a help file that the user can
refer to on this topic.

Help File Context : This is the pointer to that part of the
help file that specifically deals with this message.

Values returned by MsgBox Function:

VBA MsgBox function returns a value based on the user
input. These values can be anyone of the ones shown in
Table 2.

A Msgbox function example is shown in the code
mentioned below.

Sub test()

Dim n As Integer

 n = MsgBox("Do you want to print this file?", vbYesNo,
"Action on Files")

End Sub
IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

99

Value Description

1 Specifies that OK button is clicked.

2 Specifies that Cancel button is clicked.

3 Specifies that Abort button is clicked.

4 Specifies that Retry button is clicked.

5 Specifies that Ignore button is clicked.

6 Specifies that Yes button is clicked.

7 Specifies that No button is clicked.

Table 2

This will produce the result as in Fig 3.

Reading the Msgbox() return values

Based on the value returned by the MsgBox(), decisions
can be made.

For ex, the code mentioned here will display the message
box, and when the user clicks "Yes" it will display a
congratulatory message. If the user clicks "No" another
message "Better Luck Next time" will appear as shown in
Fig 4.

Sub test()

Dim n As Integer

n = MsgBox("Did you score more than 50 % ", vbYesNo +
vbQuestion, "Result")

If n = 6 Then

MsgBox ("Congratulations")

Else

MsgBox ("Better Luck Next Time")

 End If

End Sub

Input box

For accepting the input from the user the Input box is
used in two ways- The Input Box Function and the Input
Box Method.The InputBox method differs from the InputBox
function in that it allows selective validation of the user's
input, and it can be used with Microsoft Excel objects,
error values, and formulas.

Note that Application.Input Box calls the Input Box method;
Input Box with no object qualifier calls the InputBox
function.

Input Box Function

The Input Box Function displays a dialog box for user
input. It returns the information entered in the dialog box.
The syntax for the InputBox function is:

InputBox(prompt[, title] [, default] [, xpos] [, ypos] [,
helpfile, context])

In its simplest form , the input box function looks like:n =
Inputbox("Enter your Age")

The InputBox Method

When we precede the Input Box Function with "Application"
we get an InputBox Method that will allow us to specify
the type of info that we can collect. Ie. Application.InputBox

Its Syntax is :Input Box(Prompt, Title, Default, Left, Top,
HelpFile, HelpContextId, Type)

The Prompt, Title and Default are the same as in the
InputBox Function. However, it is the last argument "Type"
that allows us to specify the type of data we are going to
collect. These are as shown below.

Type:=0 A formula

Type:=1 A number

Type:=2 Text (a string)

Fig 3

Fig 4

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

100

Type: = 4 A logical value (True or False)

Type: = 8 A cell reference, as a Range object

Type: = 16 An error value, such as #N/A

Type := 64 An array of values

The following is an example of an InputBox method

Sub test()

Dim n As Integer

n = Application.InputBox("Enter you age", "Personal
Details", , , , , , 1)

 'Exit sub if Cancel button used

If n > 60 Then

MsgBox "You are eligible for senior citizen's concession"

Else

MsgBox ("No concession")

End If

End Sub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

105

IT & ITES Related Theory for Exercise 2.2.110A & 2.2.110B
COPA - Programming with VBA

Looping statements in VBA
Objectives: At the end of this lesson you shall be able to
• describe the “for” loops in VBA
• describe the “do” loops in VBA
• explain the use of the “exit” statement in VBA loops
• write appropriate code to perform repetitive tasks.

Introduction

There may be many situations where you need to perform
a task repeatedly / a certain number of times. In such
cases the code for the task is placed inside a loop and
the program iterates or repeats through the loop a certain
number of times ie. till a certain condition is met. Some
examples of such repetitive tasks are:

a Printing a text or number n number of times.

b Generating a sequence or series of numbers.

c Generating a table of certain calculations.

d Searching / Re arranging a set of numbers etc.

VBA provides the following types of loops to handle looping
requirements (Refer Table 1)

Table 1

Loop Type Description

for next loop Execute a sequence of statements
multiple times and abbreviates the
code that manages the loop
variable.

do....until loop Repeats a statement or group of
statements until a condition is met.

do….while loop Repeats a statement or group of
statements as long as the condition
is true.

The For Loop

The For ... next loop sets a variable to a specified set of
values, and for each value, runs the VBA code inside the
loop. For Ex.

For n = 1 To 10

debug.print n

Next n

In this example, the initial value of n is set to 1, and the
loop code, ie. printing the value of n is performed.The value
of n is set to the next value which is by default an increment
of 1. Thus this loop is executed 10 times and would print
the numbers 1 to 10. The for statement in the above code

is the same as For n = 1 To 10 Step 1 since the default
increment is 1

The same code will print numbers from 10 to 1 if the step
is changed to a negative value as shown below.

For n = 10 To 1 Step -1

debug. print n

Next n

Similarly, the following Ex. would add all the numbers from
1 to 10 and print the sum.

Dim n, sum as integer

Sum=0

For n = 1 To 10

sum=sum + n

debug. print sum

Next n

The For Each Loop

The For Each loop is similar to the For ... Next loop but,
instead of looping through a set of values for a variable, it
loops through every object within a set of objects. The
following example would print the names of all the
worksheets.

Dim ws As Worksheet

For each ws in Worksheets

debug. print ws.name

Next ws

The Exit For Statement

If you need to end the For loop before the end condition is
reached or met, simply use the END FOR in conjunction
with the IF statement. In the example given below, we exit
the for loop prematurely and before the end condition is

Copyright Free under CC BY Licence

106

met. The for example given below, the loop exits when n
reaches a value of 5.

For n = 0 To 10

debug.print n

If n=5 Then Exit For

Next n

The Do ….Until Loop repeats a statement or group of
statements until a condition is met.

There are 2 ways a Do Until loop can be used in Excel
VBA Macro code.

a Test the condition before executing the code in the
loop

b Execute the code in the loop and then test for the
condition.

Do Until….. Loop

In this example, the value of n is tested before going into
the loop.

If the condition n=10 is not met right at the beginning itself,
the code inside the loop is not executed at all. The control
then jumps to the statements appearing after the Loop
statement.

Do Until n=10

Debug.print n

n=n+1

Loop

Do ….. Loop Until

In this example, the code in the loop is executed at least
once before testing the condition. If the condition is true,
the looping stops, else the loop is executed again.

Do

Debug. print n

n=n+1

Loop Until n=10

The Do While … Loop repeats a statement or group of
statements as long as the condition is true.

Like the Do until loop, a Do While loop can be also be
used in two ways.

a Test the condition before executing the code in the
loop

b Execute the code in the loop and then test for the
condition.

Do While ….Loop

In this example, the condition ie. num<10 is checked
before entering the loop. Only if the condition is met, the
code in the loop is executed, otherwise it is skipped
entirely. This example will print a table as shown in Fig 1.

Dim num As Integer

Debug.Print "number"; Spc(2); "square"

Do While num < 10

num = num + 1

Debug.Print num; Spc(5); num * num

Loop

Do…. Loop While

In a Do…. Loop While , a set of statements in the loop are
executed once, then the condition is checked. The code
in the loop is executed only if the condition is met. (Refer
Fig 2 for the flow chart)

In this example, the value 1 is placed in cell (1,1). The row
value is incremented each time the loop code is executed.
The incremented value is placed in the cell (row,1). The
loop is executed as long as the row value is less than 10
after which the iterations stop. The condition checking is
done after executing the loop code at least once. (Fig 2)

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.110A & 2.2.110B

Fig 1

Copyright Free under CC BY Licence

107

Dim row As Integer

row = 0

Do

row = row + 1

Cells(row, 1) = row

Loop While row < 10

The While ….. Wend loop

The While ….. Wend loop executes a series of statements
as long as a given condition is True.

In this example the condition checking is done at the
beginning of the loop. This code prints hello 5 times and
then prints the value of the counter, ie. 5 at the end of the
program.

Dim Counter

Counter = 0

While Counter < 5

Counter = Counter + 1

Debug.Print "hello"

Wend

Debug.Print Counter

The Exit Statement

The Exit Statement exits a procedure or block and transfers
control immediately to the statement following the
procedure call or the block definition. It may be in the form
of Exit Do, Exit For, Exit While, Exit Select etc. depending
on where it is being used. An example of an Exit statement
is as follows:

Do While True

Count = Count + 1

Debug.Print Count

If Count = 5 Then

Debug.Print "stop at 5"

Exit Do

End If

Loop

In this example, the loop condition stops the loop when
count=5.

Previous code

Loop code

No

Yes

Next code to

Fig 2

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.110A & 2.2.110B

Copyright Free under CC BY Licence

