
90

IT & ITES Related Theory for Exercise 2.2.107A
COPA - Programming with VBA

VBA Data types, Variables and Constants
Objectives: At the end of this lesson you shall be able to
• list the data types in VBA
• declare variables and assign values
• describe the option explicit statement.

Introduction

Variables are entities that hold data. In VBA, variables are
areas allocated by the computer memory to hold data.
The following are the variable naming rules in VBA:

a Variable Names

The following are the rules when naming the variables in
VBA

1 A Variable name must start with a letter and not a
number. Numbers can be included within the name,
but not as the first character.

2 A Variable name can be no longer than 250 characters.

3 A Variable name cannot be the same as any one of
Excel's key words. For ex. you cannot name a Variable
with such names as Sheet, Worksheet etc.

4 All Variables must consist of one continuous string of
characters only. You can separate words by using the
underscore.

b Declaring Variables

In VBA, the variables are declared before using them by
assigning names and data types. Declaring variables before
use tells the computer to allocate a certain memory for
the variable data to be placed. Though it is a good practice
to declare variables before use, in Visual Basic it is not
actually compulsory to specifically declare a variable before
it is used. If a variable isn't declared, VB will automatically
declare the variable as a Variant. A variant is data type
that can hold any type of data.

To declare a variable we use the word "Dim" (short for
Dimension) followed by our chosen variable name then
the word "As" followed by the variable type. For ex. Dim n
as Integer.

You may also combine more variables to be declared in
one line, separating each variable with a comma, as follows:

Dim first_name As String, joining_date As Date, Pay As
Integer.

Declaring a variable before use is a good programming
practice for the following reasons:

1 Memory & Calculation Speed: If you do not declare
a variable to have a data type, it will, by default, have
the Variant type. This takes up more memory than many
of the other data types. Sometimes, Variant data types
also take more time to process and at times may slow
down the process.

2 Prevention of typing errors: If you always declare
your variables, then you can use a VBA option to force
you to declare variables. This will prevent you from
introducing errors in your code by accidentally typing
a variable name incorrectly.

3 Highlighting wrong Data Values: If you declare a
variable to have a specific data type, and you attempt
to assign the wrong type of data to it, this will generate
an error in your program.

The Option Explicit Statement

The option 'Explicit' forces you to declare all variables that
you use in your VBA code, by highlighting any undeclared
variables as errors during compilation (before the code will
run). To use this option, simply type the line as the very
first line of the program (In the General Declarations
section).

If you select the 'Require Variable Declaration' option of
your VBA editor, the statement'Option Explicit' is always
automatically included at the top of every new VBA module
that is created.

To do this:

• In the Visual Basic Editor, select Tools Options...

• Ensure the Editor tab is selected

• Check the box next to the option Require Variable
Declaration and click OK

Keywords

Keywords in Excel VBA are words that Excel has set
aside to use in the execution of code. This means we
cannot use them for any other purpose. For example,
Select, Active, Sub, End, Function etc are all Keywords
that we can only use for their intended purpose.

Some of the reserved keywords are shown in Table 1.

Copyright Free under CC BY Licence

91

Table 1

ByVal Call Case CBool CByte CDate

CDbl CInt CLng Const CSng CStr

Date Dim Do Double Each Else

ElseIf End EndIf Error False For

Function Get GoTo If Integer Let

Lib Long Loop Me Mid Mod

New Next Not Nothing Option Or (Bitwise)

Or (Condition) Private Public ReDim REM Resume

Select Set Single Static Step String

Sub Then To True Until vbCrLf

vbTab With While Xor

Data Types:

Visual Basic classifies data into two major categories,
the numeric data types and the non-numeric data types.

Numeric data types are types of data that consist of
numbers, which can be computed mathematically with
various standard operators such as +, -, x, / and more.
Examples of numeric data types are examination marks,
height, weight, the number of students in a class, share
values, price of goods, monthly bills, fees and others.

In VBA, numeric data are divided into 7 types, depending
on the range of values they can store. Calculations that
only involve round figures or data that does not need
precision can use Integer or Long integer in the
computation. Programs that require high precision
calculation need to use Single and Double decision data
types, they are also called floating point numbers. For
currency calculation, you can use the currency data types.
Lastly, if even more precision is required to perform
calculations that involve many decimal points, we can use
the decimal data types. These numeric data types
summarized in Table 2.

Type Storage Range of Values

Byte 1 byte 0 to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

Single 4 bytes -3.402823E+38 to -1.401298E-45 for negative values

1.401298E-45 to 3.402823E+38 for positive values.

Double 8 bytes -1.79769313486232e+308 to -4.94065645841247E-324 for negative values

4.94065645841247E-324 to 1.79769313486232e+308 for positive values.

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Decimal 12 bytes +/- 79,228,162,514,264,337,593,543,950,335 if no decimal is use

+/- 7.9228162514264337593543950335 (28 decimal places).

Table 2

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.107A

Copyright Free under CC BY Licence

92

Non Numeric Data Types

Non-numeric data types are data that cannot be
manipulated mathematically using standard arithmetic
operators. The non-numeric data comprises text or string

data types, the Date data types, the Boolean data types
that store only two values (true or false), Object data type
and Variant data type.The non numeric data types are
summarized in Table 3.

Data Type Storage Range

String(fixed length) Length of string 1 to 65,400 characters

String(variable length) Length + 10 bytes 0 to 2 billion characters

Date 8 bytes January 1, 100 to December 31, 9999

Boolean 2 bytes True or False

Object 4 bytes Any embedded object

Variant(numeric) 16 bytes Any value as large as Double

Variant(text) Length+22 bytes Same as variable-length string

Table 3

Enumerated Data Types

 If you have a set of unchanging values that are logically
related to each other, you can define them together in an
enumeration. This provides meaningful names for the
enumeration and its members, which are easier to
remember than their values. You can then use the
enumeration members in many places in your code.

An enumeration has a name, an underlying data type,
and a set of members. Each member represents a
constant.

The Enum statement can declare the data type of an
enumeration. Each member takes the enumeration's data
type. You can specify Byte, Integer, Long etc..If you do
not specify datatype for the enumeration, each member
takes the data type of its initializer. If you specify both
datatype and initializer, the data type of initializer must be
convertible to data type. If neither datatype nor initializer
is present, the data type defaults to Integer.

Ex.

Public Enum OS

Windows

Linux

Unix

DOS

MAC

End Enum

Suffixes for Literals

Literals are values that you assign to data. In some cases,
we need to add a suffix to a literal so that VB can handle
the calculation more accurately. For example, we can use
pay=12000@ for a Currency type data. Some of the suffixes
are displayed in Table 4.

Suffix Data Type

& Long

! Single

Double

@ Currency

Table 4

Note: Enclose string literals within two
quotations

Enclose date and time literals within two # symbols. Ex:

Dim marks% 'integer

Dim gorss_pay& 'long

Dim Average! 'single

Dim Total# 'double

Dim Profit@ 'currency

Dim FirstName$ 'string

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.107A

Copyright Free under CC BY Licence

93

If the data type is not specified, VB will automatically
declare the variable as a Variant.

Named Constants

If you have a value that never changes in your application,
you can define a named constant and use it in place of a
literal value. A name is easier to remember than a value.
You can define the constant just once and use it in many
places in your code. If in a later version you need to redefine
the value, the Const statement is the only place you need
to make a change.

You can use Const only at module or procedure level.
This means the declaration context for a variable must be
a class, structure, module, procedure, or block, and cannot
be a source file, namespace, or interface

Example:Const Pi As Single=3.142

Assigning Values to Variables

After declaring various variables using the Dim keywords
or other keywords, we need to assign values or information
to those variables. Assigning a value to a variable means
storing the value in that variable. The form of an assignment
statement is as follows:

Variable = Expression

The variable can be a declared variable or a control's
property value. The expression could be a mathematical
expression, a number, a literal value, a string, a Boolean
value (true or false) , a combination of other variables and
constants, a function and more. The following are some
examples:

Basic = 10000

DA = Basic * 0.9

First Name = "Uma"

Label1.Caption = "Enter your age"

Command 1 Visible = false

Textbox.multiline = True

Label 1 Caption = textbox1.Text

A type mismatch error occurs when you try to assign a
value to a variable of incompatible data type.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.107A

Copyright Free under CC BY Licence

94

IT & ITES Related Theory for Exercise 2.2.107B
COPA - Programming with VBA

Operators in VBA and operator precedence
Objectives : At the end of this lesson you shall be able to
• explain the various operators and their precedence in VBA.

Operators in VBA

An Operator can be defined using a simple expression -
4 + 5 is equal to 9. Here, 4 and 5 are called operands and
+ is called operator. VBA supports following types of
operators “

• Arithmetic Operators

• Comparison Operators

Operator Description Example

+ Adds the two operands A + B will give 15

- Subtracts the second operand from the first A - B will give -5

* Multiplies both the operands A * B will give 50

/ Divides the numerator by the denominator B / A will give 2

% Modulus operator and the remainder after an
integer division B % A will give 0

^ Exponentiation operator B ̂ A will give 100000

• Logical (or Relational) Operators

• Concatenation Operators

The Arithmetic Operators

Following arithmetic operators are supported by VBA.

Assume variable A holds 5 and variable B holds 10, the
results of the various operators as shown in Table 1.

The Comparison Operators

There are following comparison operators supported by
VBA.

Table 1 Assume variable A holds 10 and variable B holds
20, the results of various comparison operators as shown

Operator Description Example

= Checks if the value of the two operands are equal or not.
 If yes, then the condition is true (A = B) is False

<> Checks if the value of the two operands are equal or not.
If the values are not equal, then the condition is true (A <> B) is True

> Checks if the value of the left operand is greater than the
 value of the right operand. If yes, then the condition is true (A > B) is False

< Checks if the value of the left operand is less than the
value of the right operand. If yes, then the condition is true (A < B) is True

>= Checks if the value of the left operand is greater than or
equal to the value of the right operand. If yes, then the
 condition is true (A >= B) is False

<= Checks if the value of the left operand is less than or
equal to the value of the right operand. If yes, then the
condition is true (A <= B) is True

 Table 1

 Table 2

Copyright Free under CC BY Licence

95

The Logical Operators

Following logical operators are supported by VBA.

Assume variable A holds 10 and variable B holds 0, the
results on the various logical operators shown in Table 3

Table 3

Operator Description Example

AND Called Logical AND operator. If both the conditions are
True, then the Expression is true a<>0 AND b<>0 is False

OR Called Logical OR Operator. If any of the two conditions are
True, then the condition is true a<>0 OR b<>0 is true

NOT Called Logical NOT Operator. Used to reverse the logical
state of its operand. If a condition is true, then Logical NOT
operator will make false NOT(a<>0 OR b<>0) is false

XOR Called Logical Exclusion. It is the combination of NOT and
OR Operator. If one, and only one, of the expressions
evaluates to be True, the result is True. (a<>0 XOR b<>0) is true

The Concatenation Operators
Following Concatenation operators are supported by
VBA.

Assume variable A holds 5 and variable B holds 10, the
result of various concatenation operators shown in
Table 4

Table 4

Operator Description Example

+ Adds two Values as Variable. Values are Numeric A + B will give 15

& Concatenates two Values A & B will give 510

Assume variable A = “Microsoft” and variable B =
“VBScript”, the result of the various concatenation shown
in Table 5

Table 5

Operator Description Example

+ Concatenates two Values A + B will give MicrosoftVBScript

& Concatenates two Values A & B will give MicrosoftVBScript

Note: Concatenation Operators can be used for
both numbers and strings. The output depends
on the context, if the variables hold numeric
value or string value.

Precedence

When several operations occur in an expression, each
part is evaluated and resolved in a predetermined order
called operator precedence.

When operators have the same precedence they are
evaluated from left-to-right.Parentheses can be used to
override the order and to evaluate certain parts of the

expression. Operations inside parentheses are always
performed before those outside.

When a series of operators appear in the same expression
there is a strict order in which they will be evaluated.

The rules of precedence tell the compiler which operators
to evaluate first.

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.107B

Copyright Free under CC BY Licence

96

Parentheses can obviously be used to change the order
of precedence.

Operators are evaluated in the following order:
Mathematical, Concatenation, Relational, Logical.

The table 6 shows the precedence order of operators.

Order Operator Symbol

1 Exponentiation ^

2 Negation -

3 Multiplication *

3 Division /

4 Division with Integer result \

5 Modulo Mod

6 Addition +

6 Subtraction -

7 String Concatenation &

8 Equal or Assignment =

8 Not Equal To <>

8 Less Than <

8 Greater Than >

8 Less Than or Equal To <=

8 Greater Than or Equal To >=

9 Not NOT

10 And AND

11 Or OR

12 Exclusive OR XOR

13 Equivalence EQV

14 Implication IMP

Table 6

The table 7 shows the expression, steps to evaluate and
the result.

Expression First Step Second Step Third Step Result

3^(15/5)*2-5 3^3*2-5 27*2-5 54-5 49

3^((15/5)*2-5) 3^(3*2-5) 3^(6-5) 3^1 3

3^(15/(5*2-5)) 3^(15/(10-5)) 3^(15/5) 3^3 27

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.107B

Copyright Free under CC BY Licence

97

Introduction

Many applications depend on data input from users to
take the necessary action. Excel VBA has very useful
functions that allow you to gather user input for your
applications. VBA allows you to create message boxes,
user input forms and input boxes to get user input.VBA
message boxes provide a way to give information to a
user and get information from a user while the program is
running. The input Box function can be used to prompt the
user to enter a value.

Message Box

In VBA Message Boxes fall into two basic categories, the
MsgBox method and the MsgBox function.

The MsgBox Method

The message box method is used to display a pre- defined
message to the user. It also contains a single command
button "OK" to allow the user to dismiss the message
and they must do so before they can continue working in
the program.

The basic form of the Message Box (msgbox) in VBAis
:Msgbox("message")

Example:

Sub result()

Msgbox("congratulations")

End sub

This displays a message box as shown in Fig 1

Customize the buttons in a VBA message box

The Msgbox() can be customized by changing the buttons
and icons placed on it.

A list of various buttons and icons that can be used in the
VBA message box is shown in the Table 1.

For ex. to add an icon and a title to the Msgbox() we can
write the following code

Sub test()

Dim n As Integer

n = MsgBox("Congratulations", vbExclamation, "result")

End Sub

This will produce the following result as in Fig 2.

The MsgBox Function

The MsgBox Function displays a message in a dialog
box, waits for the user to click a button, and then returns
an integer indicating which button was clicked by the
user.The syntax of the Msgbox() function is :

Return value = MsgBox(Prompt, Button and Icon types,
Title, Help File, Help File Context)

IT & ITES Related Theory for Exercise 2.2.108
COPA - Programming with VBA

VBA Message boxes and Input boxes
Objectives: At the end of this lesson you shall be able to
• state the uses of message boxes and input boxes in VBA
• describe the msgbox method and msgbox function
• describe the inputbox method and inputbox function.

Fig 1

Fig 2

Copyright Free under CC BY Licence

98

Constant Description

vbOKOnly It displays a single OK button

vbOKCancel It displays two buttons OK and Cancel.

vbAbortRetryIgnore It displays three buttons Abort, Retry, and Ignore.

vbYesNoCancel It displays three buttons Yes, No, and Cancel.

vbYesNo It displays two buttons Yes and No.

vbRetryCancel It displays two buttons Retry and Cancel.

vbCritical It displays a Critical Message icon.

vbQuestion It displays a Query icon.

vbExclamation It displays a Warning Message icon.

vbInformation It displays an Information Message icon.

vbDefaultButton1 First button is treated as default.

vbDefaultButton2 Second button is treated as default.

vbDefaultButton3 Third button is treated as default.

vbDefaultButton4 Fourth button is treated as default.

vbApplicationModal This suspends the current application till the user responds to the
message box.

vbSystemModal This suspends all the applications till the user responds to the message box.

vbMsgBoxHelpButton This adds a Help button to the message box.

VbMsgBoxSetForeground Ensures that message box window is foreground.

vbMsgBoxRight This sets the Text to right aligned

vbMsgBoxRtlReading This option specifies that text should appear as right-to-left.

Table 1

Where:

Return Value: Indicates the action the user took when
the message box was shown to him/her.

Prompt : It is the message contained in the main body of
the message box.

Button and Icon Types : This specifies the set of buttons
& Icons and their placement as they would appear to the
user.

Help File : This is the path to a help file that the user can
refer to on this topic.

Help File Context : This is the pointer to that part of the
help file that specifically deals with this message.

Values returned by MsgBox Function:

VBA MsgBox function returns a value based on the user
input. These values can be anyone of the ones shown in
Table 2.

A Msgbox function example is shown in the code
mentioned below.

Sub test()

Dim n As Integer

 n = MsgBox("Do you want to print this file?", vbYesNo,
"Action on Files")

End Sub
IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

99

Value Description

1 Specifies that OK button is clicked.

2 Specifies that Cancel button is clicked.

3 Specifies that Abort button is clicked.

4 Specifies that Retry button is clicked.

5 Specifies that Ignore button is clicked.

6 Specifies that Yes button is clicked.

7 Specifies that No button is clicked.

Table 2

This will produce the result as in Fig 3.

Reading the Msgbox() return values

Based on the value returned by the MsgBox(), decisions
can be made.

For ex, the code mentioned here will display the message
box, and when the user clicks "Yes" it will display a
congratulatory message. If the user clicks "No" another
message "Better Luck Next time" will appear as shown in
Fig 4.

Sub test()

Dim n As Integer

n = MsgBox("Did you score more than 50 % ", vbYesNo +
vbQuestion, "Result")

If n = 6 Then

MsgBox ("Congratulations")

Else

MsgBox ("Better Luck Next Time")

 End If

End Sub

Input box

For accepting the input from the user the Input box is
used in two ways- The Input Box Function and the Input
Box Method.The InputBox method differs from the InputBox
function in that it allows selective validation of the user's
input, and it can be used with Microsoft Excel objects,
error values, and formulas.

Note that Application.Input Box calls the Input Box method;
Input Box with no object qualifier calls the InputBox
function.

Input Box Function

The Input Box Function displays a dialog box for user
input. It returns the information entered in the dialog box.
The syntax for the InputBox function is:

InputBox(prompt[, title] [, default] [, xpos] [, ypos] [,
helpfile, context])

In its simplest form , the input box function looks like:n =
Inputbox("Enter your Age")

The InputBox Method

When we precede the Input Box Function with "Application"
we get an InputBox Method that will allow us to specify
the type of info that we can collect. Ie. Application.InputBox

Its Syntax is :Input Box(Prompt, Title, Default, Left, Top,
HelpFile, HelpContextId, Type)

The Prompt, Title and Default are the same as in the
InputBox Function. However, it is the last argument "Type"
that allows us to specify the type of data we are going to
collect. These are as shown below.

Type:=0 A formula

Type:=1 A number

Type:=2 Text (a string)

Fig 3

Fig 4

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

100

Type: = 4 A logical value (True or False)

Type: = 8 A cell reference, as a Range object

Type: = 16 An error value, such as #N/A

Type := 64 An array of values

The following is an example of an InputBox method

Sub test()

Dim n As Integer

n = Application.InputBox("Enter you age", "Personal
Details", , , , , , 1)

 'Exit sub if Cancel button used

If n > 60 Then

MsgBox "You are eligible for senior citizen's concession"

Else

MsgBox ("No concession")

End If

End Sub

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.108

Copyright Free under CC BY Licence

101

IT & ITES Related Theory for Exercise 2.2.109A - 2.2.109C
COPA - Programming with VBA

Decision making statements in VBA
Objectives: At the end of this lesson you shall be able to
• describe the decision making process using the “if... Then” statement
• describe the use of “ladder off” and “nested if” statement
• explain the use of the “selectcase” statements.

Introduction

In a program a set of statements are normally executed
sequentially in the order in which they appear. This
happens when no decision making or repetitions are
involved. But in reality, there may be a number of situations
where we may have to change the order of execution of
statements based on certain conditions being true or false.
Some of the examples may be:

a To decide if a trainee is to be declared "Passed" or
"Failed".

b To display the Grade achieved by a student.

c To accept input only of a particular data type like
numbers.

d To decide if a number is prime or not.

e To decide if a string is a palindrome or not.

f To calculate pay, tax, commission etc. based on
certain conditions etc.

g To repeat an action a certain number of times or till a
certain limit is reached.

Decision making process can solve practical problems
intelligently and provide useful output or feedback to the
user. In order to control the program flow and to make
decisions, we need to use the conditional operators and
the logical operators together with the If control structure.

Decision making structures require that the programmer
specify one or more conditions to be evaluated or tested
by the program, along with a statement or statements to
be executed if the condition is found to be true, and other
statements to be executed if the condition is found to be
false.Table 1 shows the commonly used decision making
statements in VBA.

The If … Then Statement

It is the simplest form of control statement, frequently used
in decision making and changing the control flow of the
program execution. Syntax for if-then statement is:

If CONDITION Then

' code if the condition is met

End If

The flow chart for a typical If statement is shown in Fig 1.

Here condition refers to an expression which results in a
Boolean type result, ie. True or False.For ex. the
statement "if age <18" will test if the value of the variable
"age" is less than 18 or not. If the condition evaluates to
true, then the block of code inside the If statement will be
executed. For example:

If (age < 18) Then

debug.print "Not Eligible"

End If

The following example tests the value of the number in the
textbox and takes a decision.

Private Sub Button1_Click()

Dim n As Integer

'Enter the number of items sold by the agent

n = val(TextBox1.Text)

If n> 100 Then

Label1.Caption = " You are entitled for a commission of
Rs. 10000"

Ini�al Value

Yes

Next code to run

Check condi�on

No

Fig 1

Copyright Free under CC BY Licence

102

End If

End Sub

The If Then…. Else Statements

When an action has to be taken if the condition returns
true and another action if the condition returns false, then
we use the If Then…. Else Statements.

The syntax for the If Then … Else statements is as follows

If CONDITION Then

' code if the condition is met

Else

' code if the condition is not met

End If

The flow chart for a typical If Then … Else structure is as
shown in Fig 2.

The example of an If Then … Else structure is shown
below. This program tests if the Taxable Income entered
by the user is less than 250000 or not. If yes, a message
box appears stating that the user need not pay Income
Tax. Else, another message box tells the user to pay the
tax.

Sub test()

Dim income As Long

income = Application.InputBox("Enter you Taxable
income")

If income< 250000 Then

MsgBox "You need not pay any income tax"

Else

Msg Box ("You must pay income tax")

End If

End Sub

Using Multiple If Statements

Sometimes the condition being tested is to be evaluated
not just for returning "True" or "False" based on one
condition, but for multiple conditions too. In such cases
the multiple If Then …. Else statements can be used.
They can be used in two ways:

1 Ladder If and

2 Nested if

Ladder If statements

The ladder if statements can be used to test if a condition1,
condition2 … etc is met, and decision be taken based on
which condition is met. The typical syntax of a Ladder If
structure is:

if(boolean_expression 1)

{

/* Executes when the boolean expression 1 is true */

}

else if(boolean_expression 2)

{

 /* Executes when the boolean expression 2 is true */

}

else if(boolean_expression 3)

{

 /* Executes when the boolean expression 3 is true */

}

else

{

 /* executes when the none of the above condition is true
*/

}

Check condi�on

Ini�al Value

Yes

Next code to run

No

Code A Code B

Fig 2

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 2.2.109A - 2.2.109C

Copyright Free under CC BY Licence

103

The following is an example of a ladder if structure.

Sub grades()

Dim marks As Integer

marks = InputBox("Enter you marks")

If marks >= 80 Then

MsgBox "Distinction"

ElseIf marks >= 70 Then

MsgBox "A Grade"

ElseIf marks >= 60 Then

MsgBox "B Grade"

ElseIf marks >= 40 Then

MsgBox "C Grade"

Else

MsgBox "Failed"

End If

End Sub

This program would display the grade based on the marks
entered by the user.

Nested If statements
Sometimes it is required to evaluate one condition only if
an earlier condition is met. In such cases an If Then
statement can be placed inside an outer If Then statement.
This type of structure is also called a Nested If
structure.The syntax of a nested if structure is as follows:

If(Boolean_expression 1)

{

//Executes when the Boolean expression 1 is true

If(Boolean_expression 2)

{

//Executes when the Boolean expression 2 is true

}

}

For ex. A certain recruitment condition states that a
candidate to be declared eligible must have a minimum of
5 years' experience and also must have scored atleast
75% marks in the exam. In such a case, the first condition
to be tested is for experience >= 5 years andonly if this
condition is met, the second condition is to be evaluated.

If the first condition is not met, the control jumps to the
statement after the End if statement. The following code
is an example for the mentioned example.

Sub job_test()

Dim experience, marks As Integer

experience = InputBox("Enter your work experience in
years")

If experience >= 5 Then

marks = InputBox("Enter you marks percentage")

If marks >= 75 Then

MsgBox (" You are eligible for the post")

Else

MsgBox (" You are NOT eligible for the post")

End If

Else

MsgBox (" You are NOT eligible for the post")

End If

End Sub

Using Logical operators in If Structure
The Logical operators And, Or and Not can be used in If
structure and produce the same results as those produced
in Nested If Structures.

For ex. the above mentioned condition can be evaluated
using the And operator in the conditional statement.

Sub job_test()

Dim experience, marks As Integer

experience = InputBox("Enter your work experience in
years")

marks = InputBox("Enter you marks percentage")

If experience >= 5 And marks >= 75 Then

MsgBox (" You are eligible for the post")

Else

MsgBox (" You are NOT eligible for the post")

End If

End Sub

Select...Case
Another way to implement decision making in your VBA
code is to use a Select...Case statement. Select...Case
statements can be used to easily evaluate the same
variable multiple times and then take a particular action
depending on the evaluation.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 2.2.109A - 2.2.109C

Copyright Free under CC BY Licence

104

It is always a good practice to use Select Case Statement
when multiple If-Else conditions are involved. As the number
of If-Else conditions increases, debugging and
understanding all the flow becomes a tedious job.

The syntax for a Select...Case statement is:

Select Case VARIABLE

Case VALUE1

' code to run if VARIABLE equals Value1

Case VALUE2

' code to run if VARIABLE equals Value2

Case Else

' code to run for remaining cases

End Select

For Ex. This program asks the user to type the name of
the game and displays the number of players for the game.

Sub players()

Dim game As String

game = InputBox("enter the name of the game")

game = LCase(game)

Select Case game

Case "tennis"

Debug.Print "2 Players."

Case "cricket"

Debug.Print "11 Players."

Case "volleyball"

Debug.Print "5 Players."

Case "baseball"

Debug.Print "9 Players."

Case Else

Debug.Print "I have no idea."

End Select

End Sub

IIF Function
IIF function is used to evaluate an expression and perform
one of two actions based on the outcome of the evaluation.
For example:

IIF (Value > 10, Perform this action if Value is <= 10,
Perform this action is Value is > 10)

This function is available within VBA code and also as an
Excel function. Usually the IIF function is used to perform
quick logical assessments and can be nested to perform
more complicated evaluations. It is however important to
remember that nested IF statements can become very
complicated and difficult to support and maintain.

Now let’s look at an example. Let’s assume that we want
to calculate the length of the string only if it contains the
value Excel Help and Excel. (Fig 3)

It is important to note that we could have used the IIF
statement in one of our For Next loops to run through all
the rows on a worksheet.

Code

Dim StringToProcess As String’Variable to hold the string

to be processed

StringToProcess = ActiveSheet.Cells(2, 1).Value

ActiveSheet.Cells(6, 1).Value = IIf(InStr(StringToProcess,

“ExcelHelp”) > 0, IIf(InStr(StringToProcess, “ Excel “) > 0,

Len(StringToProcess), 0), 0)

Output (Fig 4)

Fig 3

Fig 4

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 2.2.109A - 2.2.109C

Copyright Free under CC BY Licence

105

IT & ITES Related Theory for Exercise 2.2.110A & 2.2.110B
COPA - Programming with VBA

Looping statements in VBA
Objectives: At the end of this lesson you shall be able to
• describe the “for” loops in VBA
• describe the “do” loops in VBA
• explain the use of the “exit” statement in VBA loops
• write appropriate code to perform repetitive tasks.

Introduction

There may be many situations where you need to perform
a task repeatedly / a certain number of times. In such
cases the code for the task is placed inside a loop and
the program iterates or repeats through the loop a certain
number of times ie. till a certain condition is met. Some
examples of such repetitive tasks are:

a Printing a text or number n number of times.

b Generating a sequence or series of numbers.

c Generating a table of certain calculations.

d Searching / Re arranging a set of numbers etc.

VBA provides the following types of loops to handle looping
requirements (Refer Table 1)

Table 1

Loop Type Description

for next loop Execute a sequence of statements
multiple times and abbreviates the
code that manages the loop
variable.

do....until loop Repeats a statement or group of
statements until a condition is met.

do….while loop Repeats a statement or group of
statements as long as the condition
is true.

The For Loop

The For ... next loop sets a variable to a specified set of
values, and for each value, runs the VBA code inside the
loop. For Ex.

For n = 1 To 10

debug.print n

Next n

In this example, the initial value of n is set to 1, and the
loop code, ie. printing the value of n is performed.The value
of n is set to the next value which is by default an increment
of 1. Thus this loop is executed 10 times and would print
the numbers 1 to 10. The for statement in the above code

is the same as For n = 1 To 10 Step 1 since the default
increment is 1

The same code will print numbers from 10 to 1 if the step
is changed to a negative value as shown below.

For n = 10 To 1 Step -1

debug. print n

Next n

Similarly, the following Ex. would add all the numbers from
1 to 10 and print the sum.

Dim n, sum as integer

Sum=0

For n = 1 To 10

sum=sum + n

debug. print sum

Next n

The For Each Loop

The For Each loop is similar to the For ... Next loop but,
instead of looping through a set of values for a variable, it
loops through every object within a set of objects. The
following example would print the names of all the
worksheets.

Dim ws As Worksheet

For each ws in Worksheets

debug. print ws.name

Next ws

The Exit For Statement

If you need to end the For loop before the end condition is
reached or met, simply use the END FOR in conjunction
with the IF statement. In the example given below, we exit
the for loop prematurely and before the end condition is

Copyright Free under CC BY Licence

106

met. The for example given below, the loop exits when n
reaches a value of 5.

For n = 0 To 10

debug.print n

If n=5 Then Exit For

Next n

The Do ….Until Loop repeats a statement or group of
statements until a condition is met.

There are 2 ways a Do Until loop can be used in Excel
VBA Macro code.

a Test the condition before executing the code in the
loop

b Execute the code in the loop and then test for the
condition.

Do Until….. Loop

In this example, the value of n is tested before going into
the loop.

If the condition n=10 is not met right at the beginning itself,
the code inside the loop is not executed at all. The control
then jumps to the statements appearing after the Loop
statement.

Do Until n=10

Debug.print n

n=n+1

Loop

Do ….. Loop Until

In this example, the code in the loop is executed at least
once before testing the condition. If the condition is true,
the looping stops, else the loop is executed again.

Do

Debug. print n

n=n+1

Loop Until n=10

The Do While … Loop repeats a statement or group of
statements as long as the condition is true.

Like the Do until loop, a Do While loop can be also be
used in two ways.

a Test the condition before executing the code in the
loop

b Execute the code in the loop and then test for the
condition.

Do While ….Loop

In this example, the condition ie. num<10 is checked
before entering the loop. Only if the condition is met, the
code in the loop is executed, otherwise it is skipped
entirely. This example will print a table as shown in Fig 1.

Dim num As Integer

Debug.Print "number"; Spc(2); "square"

Do While num < 10

num = num + 1

Debug.Print num; Spc(5); num * num

Loop

Do…. Loop While

In a Do…. Loop While , a set of statements in the loop are
executed once, then the condition is checked. The code
in the loop is executed only if the condition is met. (Refer
Fig 2 for the flow chart)

In this example, the value 1 is placed in cell (1,1). The row
value is incremented each time the loop code is executed.
The incremented value is placed in the cell (row,1). The
loop is executed as long as the row value is less than 10
after which the iterations stop. The condition checking is
done after executing the loop code at least once. (Fig 2)

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.110A & 2.2.110B

Fig 1

Copyright Free under CC BY Licence

107

Dim row As Integer

row = 0

Do

row = row + 1

Cells(row, 1) = row

Loop While row < 10

The While ….. Wend loop

The While ….. Wend loop executes a series of statements
as long as a given condition is True.

In this example the condition checking is done at the
beginning of the loop. This code prints hello 5 times and
then prints the value of the counter, ie. 5 at the end of the
program.

Dim Counter

Counter = 0

While Counter < 5

Counter = Counter + 1

Debug.Print "hello"

Wend

Debug.Print Counter

The Exit Statement

The Exit Statement exits a procedure or block and transfers
control immediately to the statement following the
procedure call or the block definition. It may be in the form
of Exit Do, Exit For, Exit While, Exit Select etc. depending
on where it is being used. An example of an Exit statement
is as follows:

Do While True

Count = Count + 1

Debug.Print Count

If Count = 5 Then

Debug.Print "stop at 5"

Exit Do

End If

Loop

In this example, the loop condition stops the loop when
count=5.

Previous code

Loop code

No

Yes

Next code to

Fig 2

IT & ITES : COPA (NSQF Level - 4) - Related Theory for Exercise 2.2.110A & 2.2.110B

Copyright Free under CC BY Licence

