
53

Hierarchical Directory System: Hierarchy in simple
terms, is, organisation or an arrangement of entities.
Entities can be anything such as objects, files, people,
ideas, or any other thing.

Arrangement refers to, for example, Currency can be
arranged by denomination. Pebbles can be arranged by
their size .

There are many other ways to organize entities besides
hierarchically. But, hierarchical organization is special
because by this arrangement you can name each entity
by its relationship to other entities.

In DOS, entities are the Directories in a directory system.
Here, the hierarchy begins with the essential core or root
entity. For instance, in a family tree, we may consider
great-great-grand father who was the root cause of our
existence as the core entity. In DOS , this core entity is
referred to as the the root directory.

As in the example considered above, if we consider
great-great-grand father as the root directory, then, great-
grand father, grand father, father are referred as sub
directories. So the directories under the root directory are
called subdirectories in DOS. These subdirectrories can
trace their paths back to the root directory.

The DOS hierarchical file system is called a tree-structured
file system. At the base of this tree structure is the root
directory.

IT & ITES Related Theory for Exercise 1.5.21
COPA - Dos & Linux operating systems

Comand line interface with DOS
Objectives: At the end of this lesson you shall be able to
• describe the hierarchical directory system in DOS
• use dos commands to create directories and subdirectories
• use dos commands to change and list directory
• use dos commands to access specific files.

In a family tree, say, Govinda is the son of Rajappa, who
is son of Ramappa who is son of Venkappa. Venkappa
is the head or root of the family tree for Govinda.

One can create many directories from the root. The root
will then be the parent of each of these directories. You
can also create subdirectories that stem from other
subdirectories that stem from other subdirectories and so
on. These new subdirectories have a subdirectory as
their parent directory. How subdirectories are arranged
hierarchically from the root is illustrated in Fig 1. The
DOS directory system is often called a tree-structured
directory system.

Three levels of subdirectories are represented in Fig 1.
Regardless of the number of levels, the relationship of
the subdirectories is important. Each subdirectory, as
well as the root directory, can contain user files. Two files
can have the same file name and extension as long as the
files reside in different directories. This is because, DOS
needs to know which of two same-named files your
command specifies. For this, DOS needs the name of the
directories,starting from the root, that lead to the desired
file. This sequence of directory names leading to a file is
called a path.

ROOT

A B C D

a1 a2 c1 c2

a11 a21 a22c21

LEVEL - 1

LEVEL - 2

LEVEL - 3

Fig 1

Copyright @ NIMI Not to be Republished

54

A path is a chain of directory names that tell DOS how to
find a file that you want. Each directory is seperated from
the other by a ‘ \ ’ character. This ‘ \ ’ is referred to as the
DOS directory delimiter. A files full path name including
the drive specifier (C: or D: etc.,) is the absolute indicator
of where the file is located. Typical path notation are
given below;

D:\Animals\Domestic\Pets\Dog.txt
C:\Admin\Accounts\Tours\Bata.txt

Further details of path and directory structure
will be discussed at appropriate lessons.

DOS COMMANDS

1 MKDIR Makes or Creates a new Directory.

or

MD
Syntax

MKDIR C:path\dirname
Or

MD d:path\dirname
Where,

C: is the disk drive for the sub directory

path\ indicates the path to the directory that will
hold the subdirectory being created.

dirname is the name of the subdirectory being
creating.

Switch

 (None)

Important Notes
– MKDIR or its short form MD makes new

subdirectories under the selected root directory.
– It is possible to create as many subdirectories as

 you want , but remember: DOS accepts no more
than 63 characters, including backlashes, for the path
name.

– Do not create too many levels of subdirectories and
with long names.

– You cannot create a directory name that is identical to
a file name in the current directory.

For example, if you have a file named FLIES in the
current directory, you cannot create a subdirectory by the
name FLIES in this directory. However, if the file FLIES
is given an extension FLIES. DOC , then the names will
not conflict and you can create a subdirectory by name
FLIES.

Examples

To create the subdirectory by name Drivers under the
current drive, the instruction will be,

MKDIR\Drivers
 Or

MD\Drivers
C:\Devices>MD \Printers

This instruction creates a subdirectory by name Printers
under the current drive C:. Note that although the
command is issued from another subdirectory named
devices, the newly created subdirectory Printers does
not get created under the directory Devices but directly
under the root C:. This may be verified by issuing DIR
command under C:\ and under C:\Devices.

To create a subdirectory under the directory Devices the
instruction will be,

C:\Devices>MD Printers
Discuss the following different varieties of creating
directories:

C:\Devices\Printers>MD C:\Devices\Plotters
2 CHIDR or CD
Changes or shows the path of the current directory.

Syntax
CHIDR d: path

Or, using the short form:

CD d : path

D : path are valid disk drive and directory names.

Switch

(None)

You have two methods for maneuvering through
the hierarchical directories with CD: (1) starting
at the root , or top, directory of the disk and
moving down, or (2) starting with the current
directory and moving in either direction.

To start at the root directory of a disk, you must begin the
path with the path character (\), as in \ or B:\. When DOS
sees \ as the first character in the path, the system starts
with the root directory. Otherwise, DOS starts with the
current directory.

Changing Drives: Computer will have built in memory,
the hard disk and it will also have provision to store/read
data from floppy disk, compact disk etc. Every disk is
identified by a name such as C drive, A drive, B drive etc.
C drive is represented by C: and A drive is represented
by A: and so on. DOS allows to change from current or
default drive by typing the letter identification of disk
drive desired followed immediately by a colon as shown
in the example below:

C\> a:

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.21
Copyright @ NIMI Not to be Republished

55

This command instructs to change control from C drive to
D drive.

If the disk drive is not accessed due to non availability of
floppy or any other reason, DOS will display an error
message

Not ready error reading drive A

Abort, Retry, Fail ?

It is required to press either A,R or F keys, which are
defined below

A Directs DOS to abort the command that was
responsible for the error. If this option is selected
DOS will terminate the command and redisplay
prompt.

R Directs DOS to retry the command that caused the
error. In most cases this option is selected to correct
the the problem that was causing the error. (Floppy
disk might not be inserted).

F Directs DOS to ignore the error and attempt to
continue processing. In some cases DOS will have
an error when it reads a portion of disk.

DOS COMMAND
DIR Displays a list of files and subdirectories in

a directory.

Syntax

DIR C:path/filename [/P] [/W] [/A[[:]attribs]] [/O[[:]sortord]]

[/S] [/B] [/L] [/C[H]]

Where,

– C: is the disk drive holding the directory for
displaying list of files and subdirectories

– path/ specifies directory and/or files to list.

– filename specifies file or list of files to display,
if file name is not specified all the files in the
directory will be listed.

– [/P] [/W] specifies the switches for
formatting the output.

Switch

/ P Pauses after each screenful of information and
waits to press any key. On pressing any key
another screenful or remaining information will
be displayed. Command is DIR/P

/ W Uses wide format of 80-column to display file
names only and information about file size,
date, and time is not displayed. Command is
DIR/W

 / A Displays files with specified attributes.

attribs

D Directories

R Read-only files

H Hidden files

S System files

A Files ready to archive - Prefix meaning “not”

/ O List be files in sorted order.

sorted N By name (alphabetic)

S By size (smallest first)

E By extension (alphabetic)

D By date & time (earliest first)

G Group directories first

 - Prefix to reverse order

C By compression ratio (smallest first)

/ S Displays files in specified directory and all
subdirectories.

/ B Uses bare format (no heading information or
summary).

/ L Uses lowercase.

/ C[H] Displays file compression ratio; /CH uses host
allocation unit size.

Important Notes:
– In the directory listing similar files can be listed by

using wildcards (* and ?), where (*) star and (?)
question mark are called wild characters or wild cards.
* can replace remaining charecters and ? can replace
any single character.

– When DIR is used without parameters or switches, It
displays the disks volume label and serial number;
one directory or filename per line, including the file
size in bytes, and the date and time the file was
modified; and the total number of files listed, their
cumulative size and the free space (in bytes)
remaining on the disk.

Examples

DIR *.txt

 *.txt instruction will list all files having txt extension
in the specified directory.

DIR ???T.*

???T instruction will search for files having four
characters which ends with T like TEST,
REST etc. And * instructs that these files may have
any extension like .txt, .dat etc.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.21
Copyright @ NIMI Not to be Republished

56

IT & ITES Related Theory for Exercise 1.5.22
COPA - Dos & Linux operating systems

Methods to display the contents of a text file
Objectives: At the end of this lesson you shall be able to
• use DOS commands to display the contents of a text file
• use DOS commands to copy,rename,delete and undelete files.

DOS Commands
TYPE Displays the contents of a text file.

Syntax

TYPE C:path/filename

Where,

– C: is the disk drive holding the file for displaying.

– path/ Specifies the location of file for displaying.

– filename specifies file to display.

Switch

(none)

Important notes:
– TYPE command provides a quick way to display

contents of an ASCII file with out having to use
another program. The file is stored on the disk as
ASCII (American Standard code for Information
Interchange) text. which is standard way the computer
translates binary (ones and zeros) into letters,
numbers & symbols. If the information is not stored in
the ASCII format, on using TYPE command the
information will look like gibberish.

– On issuing command DOS will look in drive specified,
moves into the path to reach the filename specified.
Then it simply translates ASCII format into the
characters, numbers and symbols and displays on
the monitor. The video monitor can show 24 lines of
information only. if the file contains more than 24
lines starting lines can not be seen since the type
command simply scrolls all information on to the
screen. Scrolling can be controlled by pressing
Control + S keys together (on holding control key
press S key and release both the keys is called as
Control + S) scrolling of information will stop on the
monitor. After viewing the contents on the screen any
key can be pressed to scroll through the remaining
contents. To view the contents of the file screen page
by screen page, MORE command can also be used.
which will stop the scrolling of information on the
screen exactly after a screen page and in the screen
page at 24 line a prompt message — More— is
displayed. After pressing any key another screen
page will be displayed. MORE is a filter e.g. itis a
program that manipulates the stream of standard
characters to the file to the standard output (monitor)
screen page by screen page.

Examples
1 C:\COPA\DOS\PRACT_3>TYPE TEST1.txt

C:\COPA\DOS\PRACT_3 is the path to the file
TEST.txt and TYPE is the command to be executed
by DOS.

2 C:\>TYPE C:\COPA\DOS\PRACT_3\>TEST1.txt
 This results in the same output as in example1. While
working from C: (C drive) this command can be
issued with out changing the directories.

3 C:\COPA\DOS\PRACT_3>TYPE TEST1.txt | MORE
This will also result in the same output but displayed
screen page by screen page. Screen page can be
changed on press of any key. Along with MORE
another character is prefixed ‘|’ this called the piping
command, Which will route the output of TYPE
command to another command MORE and the
MORE filter outputs the information.

Renaming of file(s)
RENAME This command allows to change

 Or the name of a file.

REN

Syntax

REN C: PATH\filename1.ex1 filename2.ex2
Where,

– C: is the disk drive holding the file for displaying.

– PATH/ Specifies the location of file for displaying.

– filename1.ex1 is the file to be renamed

– filename2.ex2 is the new filename

Important Notes:
– If the drive is not specified current disk drive will be

used.

– If the path is not specified current directory will be
used

– Exact file name with extension is to be given for the
file to be renamed.

– A valid file name with appropriate extension is to be
given for new filename.

– Wild characters are permitted in the file names by
which required group of files can be renamed.

Copyright @ NIMI Not to be Republished

57

– Only file names will be changed and contents remain
same.

– If attempted to change a file name to a name that
already exists in the directory.

DOS prompts an error message

Duplicate file name or file not found

– If a invalid file name or the new name is not given,
then also DOS prompts an error message

Rules for the file names.

– A File name must have 1 to 8 characters.

– An optional extension of 1 to 3 characters

– A period (.) between the name and extension name,
if extension is used

– All letters from A through Z (lower case letters are
automatically transferred to uppercase), 0 to 9
numbers and special characters & symbols $ # & @
! ^ () _ - { } ‘ ~ are permitted in the file name.

– The control characters such as Esc, Del, or space bar
cannot be used in the file name.

– The characters + = / [] : ; ? * < > : are not permitted.

– Each file name in a directory must be unique.

Examples:

1 C:\COPA\DOS\PRACT_3\>REN TEST2.txt
CHECKED.txt
C:\COPA\DOS\PRACT_3\ is the drive and path to the
TEST2.txt file

TEST2.txt is the file name to be renamed

CHECKED.txt is the new filename

2 C:\COPA\DOS\PRACT_3\>REN *.pic *.jpg the pic
extension will be changed to jpg extension files.

Copying files:
COPY Copies one or more files to another location.

Syntax

COPY [/A | /B] source [/A | /B] [+ source [/A | /B] [+ ...]]
[destination[/A | /B]] [/V] [/Y | /-Y] source specifies the file
or files to be copied. Destination specifies the directory
and/or filename for the new file(s).

Switches

/A Indicates an ASCII text file.

/B Indicates a binary file.

/V Verifies that new files are written correctly.

/Y Suppresses prompting to confirm you want to
overwrite an existing destination file.

/-Y Causes prompting to confirm you want to overwrite
an existing destination file.

Instructor shall discuss the simple switches
with at least two examples in each case .
For further details on COPY command switches
refer any tutorial or hand book on DOS

Important Notes:
– DOS command COPY can duplicate one or more

files. In the same directory with different names or
from one directory to other directory either in the
same name or in different name.

– If the drive is not specified current disk drive will be
used.

– If the path is not specified current directory will be
used.

– Exact file name with extension is to be given for the
file to be copied

– A valid file name with appropriate extension is to be
given for new copied filename

– Wild characters are permitted in the file names by
which required group of files can be copied

– On copying, both source and target files will have
same contents.

– Copy overwrites the target file with the same name

– Copy will not allow to copy a file to it self that is source
and target files should not be same

– If the destination file name is not specified while
concatenation the first file name will become the
destination name. After the first file name, additional
source files must be preceded by a plus (+) sign.

Example
1 C:\COPA\DOS\PRACT_3\>COPY TEST2.txt

TRIAL.txt
With the above command C:\COPA\DOS\PRACT_3
directory TEST2.txt file will be copied as TRIAL.txt
file in the same directory. On listing the directory both
the files will have same details and on viewing the
contents of both the file will be same. After copying
DOS prompts a message 1 file copied

2 C:\COPA\DOS\PRACT_3\>COPY *.bmp *.pic
With the above command C:\COPA\DOS\PRACT_3
directory all files with bmp extension file will be
copied as pic extension files in the same directory.
While copying DOS prompts the name of file it has
copied and after completion of copying it prompts the
number of files copied.

3 C:\COPA\DOS\PRACT_3\>COPY *.pic
C:\COPA\DOS\PRACT_4\
All files with pic extension in C:\COPA\DOS\PRACT_3
directory will be copied to C:\COPA\DOS\PRACT_4
directory with same name & extension.

Using *.* after the copy command will copy all files
with all extension to the destination.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.22
Copyright @ NIMI Not to be Republished

58

Copy concatenating: Multiple file can be combined to
form a single file by use of + between the source files and
is called as concatenation

Example 4 C:\COPA\DOS\PRACT_3\ COPY TEST2.txt
+ TRIAL.txt CONCAT1.txt
With the above command TEST2.txt and TRIAL.txt will
be combined and CONCAT1.txt file will be created which
will have the contents of first two source files.

Deleting file
DEL Deletes the files specified.

or

Erase
Syntax

 DEL C:path/filename [/P]

 ERASE C:path/filename [/P]

Where,

– C: is the disk drive holding the file to be deleted.

– path/ Specifies the location of file to be deleted.

– filename is the file to be deleted

Switch

/P Prompts for confirmation before deleting the specified
file. Using the /P switch

If the /P switch is used, DEL displays the name of a file
and prompts with a message in the following format:

filename, Delete (Y/N)?

Press Y to confirm the deletion, N to cancel the deletion
and display the next filename (if a group of files are
specified), or CRTL+C to stop the DEL command.

Important Notes
– If the drive is not specified current disk drive will be

used

– If the path is not specified current directory will be
used

– Exact file name with extension is to be given for the
file to be deleted

– Wild characters are permitted in the file names by
which required group of files can be deleted

– On deleting, files name(s) will be removed from the
directory.

– All the files in a directory can be deleted by typing the
DEL command followed by [drive:]path. Wildcard
also can be used (* and ?) to delete more than one file
at a time. However, Wildcards should be used
cautiously with the DEL command to avoid deleting
files unintentionally.

The following command is given for deleting all the files.

del *.*

DEL displays the following prompt:

 All files in directory will be deleted! Are you sure (Y/N)?

Press Y and then ENTER to delete all files in the
current directory, or

press N and then ENTER to cancel the deletion.

– Directories can not be removed with DEL command
a separate command is available for removing the
directory.

– Once the file is deleted it can not be recovered if the
memory space is occupied by a new file. If accidentally
file (s) are deleted immediately it can be recovered
by using utility command.

– The space occupied by the deleted file on the disk or
diskette is freed.

– Check for the typographic errors in the file names
before the press of enter key to activate delete
command

Example

1 C:\COPA\DOS\PRACT_3\>DEL TEST2.txt
With the above command TEST2.txt file will be
deleted from the C:\COPA\DOS\PRACT_3 directory.
On listing the directory TEST2,txt will not be available.

2 C:\COPA\DOS\PRACT_4\>DEL *.txt
With the above command in the
C:\COPA\DOS\PRACT_4 directory all files with txt
extension will be deleted.

3 C:\COPA\DOS\PRACT_3\TEMP \> DEL *.*
All files with any extension in C:\COPA\DOS\
PRACT_3\TEMP directory will be deleted.

Recovering deleted files:
UNDELETE delete protection facility

Syntax

UNDELETE C:path/filename [/DT | /DS | /DOS]

UNDELETE [/LIST | /ALL | /PURGE[DRIVE] | /
STATUS | /LOAD | /UNLOAD

/UNLOAD | /S[DRIVE] | /T[DRIVE]-entrys]]

Where,

– C: is the disk drive holding the files to be
undeleted.

– path/ Specifies the location of file to be undeleted.

– filename is the file to be undeleted

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.22

Copyright @ NIMI Not to be Republished

59

Switches

/LIST Lists the deleted files available to be
recovered.

/ALL Recovers files without prompting for
confirmation.

/DOS Recovers files listed as deleted by
MS-DOS.

/DT Recovers files protected by Delete
Tracker.

/DS Recovers files protected by Delete
Sentry.

/LOAD Loads Undelete into memory for
delete protection.

/UNLOAD Unloads Undelete from memory.

/PURGE[drive] Purges all files in the Delete Sentry
directory.

/STATUS Display the protection method in
effect for each drive.

/S[drive] Enables Delete Sentry method of
protection.

/T[drive][-entrys] Enables Delete Tracking method of
protection.

Important Notes:
Once a file is deleted from disk, it may not be possible
to retrieve it. Although the UNDELETE command can
retrieve deleted files, it can do so with certainty only if
no other files have been created or changed on the disk.
If a file is accidentally deleted and it is required to
keep, stop what all other activities on the computer and
immediately use the UNDELETE command to retrieve
the file.

Example
1 C:\COPA\DOS\PRACT_3\>UNDELETE TEST2.txt

With the above command TEST2.txt file will be
recovered. On listing TEST2.txt file will be available
in C:\COPA\DOS\PRACT_3 directory.

2 C:\COPA\DOS\PRACT_4\TEMP\>UNDELETE
With the above command multiple files can be
recovered. DOS will prompt for confirmation of
undeletion of each file and asks to type the first letter
of the file. After undeletion and listing of
C:\COPA\DOS\PRACT_4 directory, undeleted file
names can be seen .

3 C:\COPA\DOS\PRACT_4\TEMP\>UNDELETE /ALL
With the above command multiple files can be
recovered. DOS will not prompt for confirmation of
undeletion of each file. After undeletion and listing of
C:\COPA\DOS\PRACT_4 directory, undeleted file
names can be seen.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.22
Copyright @ NIMI Not to be Republished

60

IT & ITES Related Theory for Exercise 1.5.23
COPA - Dos & Linux Operating System

Introduction to Linux operating system
Objectives: At the end of this lesson you shall be able to
• overview of linux
• define futures of linux
• explain application area of linux
• describe about kernel.

Overview of Linux
The operating system
Developers need special tools (like the compilers and
command lines found in GNU) to write applications that
can talk to the kernel. They also need tools and applications
to make it easy for outside applications to access the
kernel after the application is written and installed.

This collective set of tools, combined with a kernel, is
known as the operating system. It is generally the lowest
layer of the computer's software that is accessible by the
average user. General users get to the operating system
when they access the command line.

Linux provides powerful tools with which to write their
applications: developer environments, editors, and
compilers are designed to take a developer's code and
convert it to something that can access the kernel and
get tasks done.

Like the kernel, the Linux operating system is also
modular. Developers can pick and choose the operating
tools to provide users and developers with a new flavor of
Linux designed to meet specific tasks.

Introduction to Linux
Linux (pronounced Lih-nucks) is a UNIX-like operating
system that runs on many different computers. Although
many people might refer to Linux as the operating
system and included software, strictly speaking, Linux is
the operating system kernel, which comes with a
distribution of software.

Linux was first released in 1991 by its author Linus Torvalds
at the University of Helsinki. Since then it has grown
tremendously in popularity as programmers around the
world embraced his project of building a free
operating system, adding features, and fixing problems.

Linux is popular with today's generation of computer
users for the same reasons early versions of the UNIX
operating system enticed fans more than 20 years ago.
Linux is portable, which means you'll find versions
running on name-brand or clone PCs, Apple Macintoshes,
Sun workstations, or Digital Equipment Corporation
Alpha-based computers. Linux also comes with source
code, so you can change or customize the software to
adapt to your needs. Finally, Linux is a great operating
system, rich in features adopted from other versions of
UNIX.

Where is Linux?
One of the most noted properties of Linux is where it can
be used. Windows and OS X are predominantly found on
personal computing devices such as desktop and laptop
computers. Other operating systems, such as Symbian,
are found on small devices such as phones and PDAs,
while mainframes and supercomputers found in major
academic and corporate labs use specialized operating
systems such as AS/400 and the Cray OS.

Linux, which began its existence as a server OS and Has
become useful as a desktop OS, can also be used on all
of these devices. ‚ÄúFrom wristwatches to
supercomputers,‚Äù is the popular description of Linux'
capabilities.

The future of Linux
Linux is already successful on many different kinds of
devices, but there are also many technological areas where
Linux is moving towards, even as desktop and server
development continues to grow faster than any other
operating system today.

Linux is being installed on the system BIOS of laptop and
notebook computers, which will enable users to turn their
devices on in a matter of seconds, bringing up a
streamlined Linux environment. This environment will have
Internet connectivity tools such as a web browser and an
e-mail client, allowing users to work on the Internet without
having to boot all the way into their device's
primary operating system-even if that operating system is
Windows.

At the same time, Linux is showing up on mobile Internet
devices (MIDs). This includes embedded devices such as
smart phones and PDAs, as well as netbook devices-
small laptop-type machines that feature the core
functionality of their larger counterparts in a smaller, more
energy-efficient package.

The growth of cloud computing is a natural fit for Linux,
which already runs many of the Internet's web servers.
Linux enables cloud services such as Amazon's A3 to
work with superior capability to deliver online applications
and information to users.

Related to Linux' growth in cloud computing is the
well-known success of Linux on supercomputers, both in
the high-performance computing (HPC) and high-availability
(HA) areas, where academic research in physics and
bioengineering, and firms in the financial and energy

Copyright @ NIMI Not to be Republished

61

industries need reliable and scalable computing power to
accomplish their goals.

Many of the popular Web 2.0 services on the Internet,
such as Twitter, Linked In, YouTube, and Google all rely
on Linux as their operating system. As new web services
arrive in the future, Linux will increasingly be the platform
that drives these new technologies.

Current application of Linux operating systems
Today Linux has joined the desktop market. Linux
developers concentrated on networking and services in
the beginning, and office applications have been the last
barrier to be taken down. They don't like to admit that
Microsoft is ruling this market, so plenty of alternatives
have been started over the last couple of years to make
Linux an acceptable choice as a workstation, providing an
easy user interface and MS compatible office applications
like word processors, spreadsheets, presentations and
the like. On the server side, Linux is well-known as a stable
and reliable platform, providing database and trading
services for companies like Amazon, the well-known online
bookshop, US Post Office, the German army and many
others. Especially Internet providers and Internet service
providers have grown fond of Linux as firewall, proxy- and
web server, and you will find a Linux box within reach of
every UNIX system administrator who appreciates a
comfortable management station. In post offices, they are
the nerve centres that route mail and in large search engine,
clusters are used to perform internet searches. These are
only a few of the thousands of heavy-duty jobs that Linux
is performing day-to-day across the world. It is also worth
to note that modern Linux not only runs on workstations,
mid- and high-end servers, but also on "gadgets" like PDA's,
mobiles, a shipload of embedded applications and even
on experimental wristwatches. This makes Linux the only
operating system in the world covering such a wide range
of hardware.

The code
Linux is also unique from other operating systems in that
it has no single owner. Torvalds still manages the
development of the Linux kernel, but commercial and
private developers contribute other software to make the
whole Linux operating system.

The kernel
All operating systems have kernels, built around the
architectural metaphor that there must be a central set of
instructions to direct device hardware, surrounded by
various modular layers of functionality. The Linux kernel is
unique and flexible because it is also modular in nature.

Modularity is desirable because it allows developers to
shed parts of the kernel they don't need to use. Typically
a smaller kernel is a faster kernel, because it isn't running
processes it does not need.

If a device developer wants a version of Linux to run on a
cell phone, she does not need the kernel functionality that
deals with disk drives, Ethernet devices, or big monitor
screens. She can pull out those pieces (and others), leaving
just the optimized kernel to use for the phone.

The kernel of the Window operating system (which few
people outside of Microsoft are allowed to look at without

Fig 1

paying for the privilege) is a solidly connected piece of
code, unable to be easily broken up into pieces. It is difficult
(if not impossible) to pare down the Windows kernel to fit
on a phone.

This modularity is significant to the success of Linux. The
ability to scale down (or up) to meet the needs of a specific
platform is a big advantage over other operating systems
constrained to just a few possible platforms.

Modularity also effects stability and security as well. If
one piece of the kernel code happens to fail, the rest of
the kernel will not crash. Similarly, an illicit attack on one
part of the kernel (or the rest of the operating system)
might hamper that part of the code, but should not
compromise the security of the whole device.

The environments
The windows, menus, and dialog boxes most people think
of as part of the operating system are actually separate
layers, known as the windowing system and the desktop
environment.

These layers provide the human-oriented graphical user
interface (GUI) that enables users to easily work with
applications in the operating system and third-party
applications to be installed on the operating system.

In Linux, there a lot of choices for which windowing
system and desktop environment can be used,
something that Linux allows users to decide. This cannot
be done in Windows and it's difficult to do in OS X.

Like the operating system and kernel, there are tools and
code libraries available that let application developers to
more readily work with these environments (e.g., gtk+ for
GNOME, Qt for KDE).

The applications

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.23
Copyright @ NIMI Not to be Republished

62

Operating systems have two kinds of applications: those
that are essential components of the operating system
itself, and those that users will install later. Closed
operating systems, like Windows and OS X, will not let
users (or developers) pick and choose the essential
component applications they can use. Windows
developers must use Microsoft's compiler, windowing
system, and so on.

Linux application developers have a larger set of choices
to develop their application. This allows more flexibility to
build an application, but it does mean a developer will
need to decide which Linux components to use.

The distributions
A Linux distribution is a collection of (usually open source)
software on top of a Linux kernel. A distribution (or short,
distro) can bundle server software, system management
tools, documentation and many desktop applications in a
central secure software repository. A distro aims to
provide a common look and feel, secure and easy
software management and often a specific operational
purpose.

Let's take a look at some popular distributions.

Red hat
Red Hat is a billion dollar commercial Linux company that
puts a lot of effort in developing Linux. They have hundreds
of Linux specialists and are known for their excellent
support. They give their products (Red Hat
Enterprise Linux and Fedora) away for free. While Red

Hat Enterprise Linux (RHEL) is well tested before release
and supported for up to seven years after release,
Fedora is a distro with faster updates but without
support.

Ubuntu
Canonical started sending out free compact discs with
Ubuntu Linux in 2004 and quickly became popular for home
users (many switching from Microsoft Windows). Canonical
wants Ubuntu to be an easy to use graphical Linux desktop
without need to ever see a command line. Of course they
also want to make a profit by selling support for Ubuntu.

Debian
There is no company behind Debian. Instead there are
thousands of well organised developers that elect a Debian
Project Leader every two years. Debian is seen as one of
the most stable Linux distributions. It is also the basis of
every release of Ubuntu. Debian comes in three versions:
stable, testing and unstable. Every Debian release is
named after a character in the movie Toy Story.

Other
Distributions like Cent OS, Oracle Enterprise Linux and
Scientific Linux are based on Red Hat Enterprise Linux
and share many of the same principles, directories and
system administration techniques. Linux Mint, Edubuntu
and many other ubuntu named distributions are based on
Ubuntu and thus share a lot with Debian. There are
hundreds of other Linux distributions.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.23
Copyright @ NIMI Not to be Republished

63

IT & ITES Related Theory for Exercise 1.5.24 - 1.5.26
COPA - Dos & Linux Operating System

Handling commands and various editors
Objectives: At the end of this lesson you shall be able to
• know about terminal
• explain the command shell
• list out the directory layout of linux
• define the linux commands
• list out the special characters of linux OS
• explain various editors in linux OS.

Starting up a terminal
To access the shell we will use a shell-like application,
also called a terminal emulator. There is a huge number
of good terminal applications out there, including the
default ones in GNOME or KDE, or Yakuake, Guake, rxvt
and so on. For now let's just stick with the default that

comes with your system. If you're using GNOME you can
access the terminal by going to Applications ->
Accessories -> Terminal or pressing Alt+F2 and typing
gnome-terminal in the run box that appears, followed by
Enter. If you're running KDE you can type instead
console after pressing Alt+F2.

Depending on the distribution, the prompt may look some-
thing like user@host$. The first part before the amper-
sand is the login username, and the other one is the
hostname of the computer.

Command shell
A shell is a command interpreter which allows you to
interact with the computer. The way things work is pretty
simple: you type in commands, the shell interprets them,
performs the tasks it was asked to do, and finally it sends
the results to the standard output, which is usually the
screen.

This is a list of files inside the root directory. The root
directory is the first location in the file system tree
hierarchy, and it is represented by the slash
character : /.

Some of the most popular shells are:

• bash - the Bourne-Again Shell, the default shell on
most Linux systems.

• sh - the Bourne Shell, an older shell which is not so
widely used anymore.

• csh - the ‘C’ Shell, which accepts a syntax which
resembles the ‘C’ programming language.

• tcsh - an improved version of the ‘C’ Shell.

• ksh - the Korn Shell, initially developed in the early
1980’s.

• dash - Debian Almquist Shell, a shell created by the
Debian distribution.

Listing of shells available in the system
$ cat /etc/shells/

The above command will display the following output as
on Fig 2.

In this tutorial we will focus on Bash, since it is the most
widely used and also one of the most powerful shells out
there. Bash is a modern implementation of the older
Bourne Shell (sh), developed by the GNU project, which
provides a huge amount of tools and which, together with
the Linux kernel, desktop environments like GNOME or
KDE and applications which run on top of them, com-
prise the whole Linux platform. On a Debian or Ubuntu
distribution, the default shell used by the system is speci-
fied in the file /etc/passwd (default being Bash).

Fig 1

Copyright @ NIMI Not to be Republished

64

How to display default shell in the system
Type the following command in the terminal

$ echo $SHELL

Fig 2

And press Enter key. The default shell will be displayed
as on Fig 3.

Fig 3

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

65

The Linux directory layout

Directory Description

The nameless base of the file system. All other directories, files, drives,
and devices are attached to this root. Commonly (but incorrectly)
referred to as the “slash” or “/” directory. The “/” is just a directory
separator, not a directory itself.

/bin Essential command binaries (programs) are stored here (bash, ls,
mount, tar, etc.)

/boot Static files of the boot loader
/dev Device files. In Linux, hardware devices are accessed just like other

files, and they are kept under this directory.
/etc Host-specific system configuration files.
/home Location of users' personal home directories (e.g. /home/Susan).
/lib Essential shared libraries and kernel modules.
/proc Process information pseudo-file system. An interface to kernel data

structures
/root The root (super user) home directory.
/sbin Essential system binaries (fdisk, fsck, init, etc).
/tmp Temporary files. All users have permission to place temporary files here.
/usr The base directory for most shareable, read-only data (programs,

libraries, documentation, and much more).
/usr/bin Most user programs are kept here (cc, find, du, etc.).
/usr/include Header files for compiling C programs.
/usr/lib Libraries for most binary programs
/usr/local “Locally” installed files. This directory only really matters in

environments where files are stored on the network. Locally-installed
files go in /usr/local/bin, /usr/local/lib, etc.). Also often used for
Software packages installed from source, or software not officially
shipped with the distribution.

/usr/sbin Non-vital system binaries (lpd, useradd, etc.)
/usr/share Architecture-independent data (icons, backgrounds, documentation,

terminfo, man pages, etc.).
/usr/src Program source code. E.g. The Linux Kernel, source RPMs, etc.
/usr/X11R6 The X Window System
/var Variable data: mail and printer spools, log files, lock files, etc.

What are Linux commands?
Linux commands are executable binary files which can
be ran to perform certain tasks, like for example listing
the files in a directory running an entire graphical appli-
cation. Examples of frequently used commands are ls,
cd, pwd, date or cat. With the exception of executable
files, there is also a category called shell built-ins, which
are commands provided by the shell itself (Bash in our
case). We'll deal with those later.

The general form of a Linux command is:
command options(s) filename(s)

Which specifies a command, followed by one or more
parameters, and optionally one or more files to apply it
on. For example:

$ echo -e 'Hello, world!\n'

Will output the text 'Hello, world!' followed by a newline
character. The -e parameter (also called argument, or
switch in this case) tells the echo command to interpret
escaped characters, like the trailing \n, which will add a
newline after the text inside the single quotes. Ignore the
leading dollar sign, it just signifies the shell prompt.

A command may or may not have arguments. An argu-
ment can be an option or a filename.

Special characters in linux operating system
it is important to know that there are many symbols and
characters that the shell interprets in special ways. This
means that certain typed characters: a) cannot be used
in certain situations, b) may be used to perform special
operations, or, c) must be "escaped" if you want to use
them in a normal way.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

66

Character Description

\
Escape character. If you want to reference a special character, you must
“escape” it with a backslash first.
Example: touch /tmp/filename*

/ Directory separator, used to separate a string of directory names.
Example: /usr/src/linux

. Current directory. Can also “hide” files when it is the first character in a
filename.

. . Parent directory

~ User's home directory

*

Represents 0 or more characters in a filename, or by itself, all files in a
directory.
Example: pic*2002 can represent the files pic2002, picJanuary2002,
 picFeb292002, etc.

?
Represents a single character in a filename.
Example: hello?.txt can represent hello1.txt, helloz.txt, but not
 hello22.txt

[]
Can be used to represent a range of values, e.g. [0-9], [A-Z], etc.
Example: hello[0-2].txt represents the names hello0.txt,
 hello1.txt, and hello2.txt

| “Pipe”. Redirect the output of one command into another command.
Example: ls | more

>
Redirect output of a command into a new file. If the file already exists,
over-write it.
Example: ls > myfiles.txt

>> Redirect the output of a command onto the end of an existing file.
Example: echo .Mary 555-1234. >> phonenumbers.txt

< Redirect a file as input to a program.
Example: more < phonenumbers.txt

;
Command separator. Allows you to execute multiple commands on a single
line.
Example: cd /var/log ; less messages

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

67

The cd command
The cd command is used to change the current directory
(i.e., the directory in which the user is currently working)
in Linux and other Unix-like operating systems. It is similar
to the CD and CHDIR commands in MS-DOS.

cd's syntax is
cd [option] [directory]

The items in square brackets are optional. When used
without specifying any directory name, cd returns the user
to the previous current directory. This provides a convenient
means of toggling between two directories.

When a directory name is provided, cd changes the current
directory to it. The name can be expressed as an absolute
pathname (i.e., location relative to theroot directory) or as
a local pathname (i.e., location relative to the current
directory). It is usually more convenient to use a local
pathname when changing to a subdirectory of the current
directory.

As an example, the following would change the current
directory, regardless of where it is on the system (because
it is an absolute path), to the root directory (which is
represented by a forward slash):

cd /
Likewise, the following would change the current directory,
regardless of its location, to the /usr/sbin directory (which
contains non-vital system utilities that are used by the
system administrator):

cd /usr/sbin
If a user currently in the directory /usr/local/share/man/
desired to change to the directory /usr/local/share/man/
man2, which is a subdirectory of the current directory, it
would be possible to change by using the absolute
pathname, i.e.,

cd /usr/local/share/man/man2
However, it would clearly be much less tedious to use the
relative pathname, i.e.,

cd man2
On Unix-like operating systems the current directory is
represented by a singledot and its parent directory (i.e.,
the directory that contains it) is represented by two
consecutive dots. Thus, it is possible (and often convenient)
to change to the parent of the current directory by using
the following:

cd ..
Another convenient feature of cd is the ability for any user
to return directly to its home directory by merely using a
tilde as the argument. A home directory, also called a
login directory, is the directory on a Unix-like operating
system that serves as the repository for a user's personal
files, directories and programs. It is also the directory that
a user is first in after logging into the system. A tilde is a
short, wavy, horizontal line character that represents the

home directory of the current user. That is, any user can
return immediately to its home directory by typing the
following and then pressing the Enter key:

cd ~
This is easier than typing the full name of the user's home
directory, for instance, /home/josephine in the case of a
user named josephine. (And it is just one of the numerous
shortcuts that help make the command line on Unix-like
operating systems so easy to use.)

When followed by a space and then a hyphen, cd both
returns the user to the previous current directory and
reports on a new line the absolute pathname of that
directory. This can further enhance the already convenient
toggling capability of cd. Toggling is particularly convenient
when at least one of the two directories has a long absolute
pathname, such as /usr/local/share/man/man2.

cd has only two options, and neither of them are
commonly used. The -P option instructs cd to use the
physical directory structure instead of following symbolic
links. The -L option forces symbolic links to be followed.

The pwd command
The pwd command reports the full path to the current
directory.

The current directory is the directory in which a user is
currently operating while using a command line interface.
A command line interface is an all-text display mode and
it is provided via a console (i.e., a display mode in which
the entire screen is text only) or via a terminal window
(i.e., a text-only window in a GUI).

The full path, also called an absolute path, to a directory
or file is the complete hierarchy of directories from the
root directory to and including that directory or file. The
root directory, which is designated by a forward slash (/),
is the base directory on the filesystem (i.e., hierarchy of
directories), and it contains all other directories,
subdirectories and files on the system. Thus, the full path
for any directory or file always begins with a forward slash.

pwd is one of the most basic commands in Linux and
other Unix-like operating systems, along with ls, which is
used to list the contents of the current directory, andcd,
which is used to change the current directory.

pwd's syntax is
pwd [option]

Unlike most commands, pwd is almost always used just
by itself, i.e.,

Pwd
That is, it is rarely used with its options and never used
with arguments (i.e., file names or other information
provided as inputs). Anything that is typed on the same
line after pwd, with the exception of an option, is ignored,
and no error messages are returned.

As an example, if a user with the username janis is in its
home directory, then the above command would typically
return /home/janis/ (because, by default, all home

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

68

directories are located in the directory /home). Likewise,
if a user were currently working in directory /usr/share/
config (which contains a number of programconfiguration
files), then the same command would return /usr/share/
config.

pwd is useful for confirming that the current directory has
actually been changed to what the user intended after
using cd. For example, after issuing the cd command to
change the current directory from /home/janis to /usr/share/
config, pwd could be used for confirmation; that is, the
following sequence of commands would be issued:

cd /usr/share/config/
pwd

The standard version of pwd has a mere two options, both
of which are employed only infrequently. The --help option
is used as follows:

pwd --help
This option displays information about pwd, of which there
is very little because it is such a simple command (i.e., it
only has two options and accepts no arguments).

The other option is --version, which displays the version
number, i.e.,

pwd --version
Although it is often thought of as standing for present
working directory, pwd is actually an acronym for print
working directory. The word print is traditional
UNIXterminology for write or display, and it originated when
computer output was typically printed on paper by default
because CRT (cathode ray tube) display monitors were
not yet widely available.

The echo command
echo is a built-in command in the bash and C shells that
writes its arguments to standard output.

A shell is a program that provides the command line (i.e.,
the all-text display user interface) on Linux and other Unix-
like operating systems. It also executes (i.e., runs)
commands that are typed into it and displays the results.
bash is the default shell on Linux.

A command is an instruction telling a computer to do
something. An argument is input data for a command.
Standard output is the display screen by default, but it
can be redirected to a file, printer, etc.

The syntax for echo is

$ echo $USER
$ echo "Hello world"

The items in square brackets are optional. A string is any
finite sequence of characters (i.e., letters, numerals,
symbols and punctuation marks).

When used without any options or strings, echo returns a
blank line on the display screen followed by the command
prompt on the subsequent line. This is because pressing
the ENTER key is a signal to the system to start a new

line, and thus echo repeats this signal.

When one or more strings are provided as arguments,
echo by default repeats those stings on the screen. Thus,
for example, typing in the following and pressing the ENTER
key would cause echo to repeat the phrase This is a pen.
on the screen:

echo This is a pen.
It is not necessary to surround the strings with quotes, as
it does not affect what is written on the screen. If quotes
(either single or double) are used, they are not repeated
on the screen.

Fortunately, echo can do more than merely repeat verbatim
what follows it. That is, it can also show the value of a
particular variable if the name of the variable is preceded
directly (i.e., with no intervening spaces) by the dollar
character ($), which tells the shell to substitute the value
of the variable for its name.

For example, a variable named x can be created and its
value set to 5 with the following command:

x = 5
The value of x can subsequently be recalled by the following:

echo The number is $x.
Echo is particularly useful for showing the values of
environmental variables, which tell the shell how to behave
as a user works at the command line or in scripts(short
programs).

For example, to see the value of HOME, the environmental
value that shows the current user's home directory, the
following would be used:

echo $HOME
Likewise, echo can be used to show a user's PATH
environmental variable, which contains a colon-separated
list of the directories that the system searches to find the
executable program corresponding to a command issued
by the user:

echo $PATH
echo, by default, follows any output with a newline
character. This is a non-printing (i.e., invisible) character
that represents the end of one line of text and the start of
the next. It is represented by \n in Unix-like operating
systems. The result is that the subsequent command
prompt begins on a new line rather than on the same line
as the output returned by echo.

The -e option is used to enable echo's interpretation of
additional instances of the newline character as well as
the interpretation of other special characters, such as a
horizontal tab, which is represented by \t. Thus, for
example, the following would produce a formatted output:

echo -e "\n Projects: \n\n\tplan \n\tcode \n\ttest\n"
(The above command should be written on a single line,
although it may render as two lines on smaller display
screens.) The -n option can be used to stop echo from
adding the newline to output.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

69

By making use of output redirection, echo provides a very
simple way of creating a new file that contains text. This
is accomplished by typing echo followed by the desired
text, the output redirection operator (which is a rightward
pointing angle bracket) and finally the name of the new
file. The file can likewise be formatted by using special
characters. Thus, for example, the formatted output from
the above example could be used to create a new file
called project1:

echo -e "\n Project1: \n\n\tplan \n\twrite \n\ttest\n" >
project1

The contents of the new file, including any formatting, can
be verified by using a command such as cat or less, i.e.,

less project1
echo can likewise be a convenient way of appending text
to the end of a file by using it together with the the append
operator, which is represented by two consecutive rightward
pointing angle brackets. However, there is always the risk
of accidentally using a single bracket instead of two,
thereby overwriting all of the contents of the file, and thus,
this feature is best reserved for use in scripts.

echo can also be used with pattern matching, such as the
wildcard character, which is represented by the star
character. For example, the following would return the
phrase The gif files are followed by the names of all the .gif
image files in the current directory:

echo -e The gif files are *.gif
The cal command
Displays calendar of current month.

$ cal
July 2012

Su Mo Tu We Th Fr Sa
 1 2 3 4 5 6 7

 8 9 10 11 12 13 14

 15 16 17 18 19 20 21

 22 23 24 25 26 27 28

 29 30 31

'cal ' will display calendar for specified month and year.

$ cal 08 1991
August 1991

Su Mo Tu We Th Fr Sa
 1 2 3

 4 5 6 7 8 9 10

 11 12 13 14 15 16 17

 18 19 20 21 22 23 24

 25 26 27 28 29 30 31

Date command
Display current time and date.

$ date
Fri Jul 6 01:07:09 IST 2012

If you are interested only in time, you can use 'date +%T'
(in hh:mm:ss):

$ date +%T
01:13:14

tty command
Displays current terminal.

$ tty
/dev/pts/0

whoami command
This command reveals the current logged in user.

$ whoami
raghu

id command
This command prints user and groups (UID and GID) of
current user.

$ id
uid=1000(raghu) gid=1000(raghu)

groups = 1000 (raghu), 4(adm), 20(dialout), 24(cdrom),
46(plugdev), 112(lpadmin), 120(admin),122(sambashare)

By default information about current user is displayed. If
another username is provided as an argument, information
about that user will be printed:

$ id root
uid=0(root) gid=0(root) groups=0(root)

Clear command
This command clears the screen.

Getting help command
For all its advantages, a big disadvantage of command
line is that there are a lot of commands and even more are
their options and usage. But nobody can remember all
commands. There are some smarter ways of using
command line. Linux provides us with several such
resources discussed here:

--help option
With almost every command, '--help' option shows usage
summary for that command.

$ date --help
Usage: date [OPTION]... [+FORMAT]

or: date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

Display the current time in the given FORMAT, or set the
system date.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

70

The whatis command
The whatis command provides very brief descriptions of
command line programs (i.e., all-text mode programs) and
other topics related to Linux and other Unix-like operating
systems.

It accomplishes this by searching the short descriptions
in the whatis database for each keyword provided to it as
an argument (i.e., input data). This database contains just
the title, section number and description from the NAME
section of each page in the man manual that is built into
most Unix-like systems.

The syntax for whatis is:
whatis keyword(s)
For example, the following provides a single line summary
of the headcommand (which by default displays the first
ten lines of each file that is provided to it as an argument):

whatis head
whatis can be used to simultaneously search for information
about multiple topics. For example, the following would
provide information about both head and tail (which by
default reads the final ten lines of files):

whatis head tail
The output of whatis is limited by the fact that it provides
only a single line for each keyword found in the database;
thus it supplies incomplete information about even
moderately complex commands. For example, the
following use of whatis to obtain information about the cat
command generates the output "concatenate files and print
on the standard output":

whatis cat
However, this omits some important information about cat,
particularly the facts that it is very convenient to use for
reading files and that it is also used to create and write to
files.

whatis is similar to the apropos command. However,
apropos is more powerful in that its arguments are not
limited to complete words but can also be strings (i.e.,
any finite sequences of characters) which comprise parts
of words. Both commands are unusual in that they have
no options.

The man command (which is used to read the built-in
manual pages), when used with its -f option, produces the
same output as whatis. Thus, for example,

man -f cat
is equivalent to

whatis cat
Info pages
Info documents are sometimes more elaborated than man
pages. But for some commands, info pages are just the
same as man pages. These are like web pages. Internal
links are present within the info pages. These links are
called nodes. info pages can be navigated from one page
to another through these nodes.

$ info date
Word processors in the Linux environment
Text editors are used by many different types of people.
Casual users, writers, programmers, and system
administrators will all use a text editor at one time or another
in Linux.

Use of text editor
A text editor is just like a word processor without a lot of
features. All operating systems come with a basic text
editor. Linux comes with several. The main use of a text
editor is for writing something in plain text with no formatting
so that another program can read it. Based on the
information it gets from that file, the program will run one
way or another.

vi Editor
"vi" (pronounced "vee eye") is a text editor with a
deceptively simple appearance that belies its great power
and efficiency. New users soon realize that there is far
more to this little program than meets the eye.

vi, or one of its clones, is found in almost every version of
Linux and Unix, and, in fact, it is the only editor that is
available in virtually every Unix installation.

History of vi
The vi editor was developed starting around 1976 by Bill
Joy, who was then a graduate student at the University of
California at Berkeley. Joy later went on to help found Sun
Microsystems and became its Chief Scientist.

"ed" was the original Unix text editor. Like other early text
editors, it was line oriented and used from dumb printing
terminals. Joy first developed "ex" as an improved line
editor that supported a superset of ed commands. He then
developed vi as a "visual interface" to ex. That is, it allows
text to be viewed on a full screen rather than only one line
at a time. vi takes its name from this fact.

vi remains very popular today in spite of the development
and widespread availability of GUI (graphical user interface)
mode text editors which are far more intuitive and much
easier for beginners to use than text-mode text editors
such as vi. GUI-mode text editors include gedit and Emacs,
both of which have become very
common on Linux and other Unixes today.

Features of vi

• It is present in almost every Linux Unix system, even
the most minimal.

• It is very small. In fact, some versions have a total
code size of less than 100KB. This makes it easy to
include vi on even the tiniest versions of Linux, such as
those in embedded systems and those that run from a
single floppy disk.

• It is typist-friendly, at least once you get used to it. For
example, the commands are very short, usually just a
few keystrokes. And because vi does not use the
mouse, there is never any need to remove one's hands

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

71

from the keyboard. This can speed up editing
substantially.

• It is very powerful, as just a few very short commands
can make sweeping changes to large documents. In
fact, vi is more powerful than most of its users realize,
and few of them know more than just fraction of all the
commands.

Opening and closing file
vi can be used both when your system is in text mode
(the entire screen is devoted to text and there are no
images) and when your system is in GUI mode (the screen
contains windows, images and menus). When it is in GUI
mode (usually KDE or Gnome), vi runs in a terminal window.
A terminal window is a text-only window, and it can usually
be opened by clicking on an icon (small image) of a
computer screen.

(In the case of Red Hat Linux, the terminal window can be
opened by clicking on the icon of a red hat in the lower left
hand corner of the screen, opening the System Tools menu
and then selecting Terminal from that menu. It can be
convenient to add the icon for the terminal window to the
launcher panel along the bottom of the screen, if it is not
already there.)

There are at least two ways to use vi to simultaneously
create and open a new file. One is by just typing vi at the
command line, like this:

vi
This creates an empty file that will not have a name until
you save its contents to disk (i.e., transfer the text you
typed into it to your hard disk, floppy disk, etc. for long
term storage).

A second way to open a new file is by typing vi followed by
the name of the file to be created, for example:

vi apple
This creates a new file named "apple" in the current
directory (the directory or folder which is currently open
on your all-text screen or your terminal window).

If you want, it could create the same file with an extension
such as ".txt" added to the end of the file name. In Linux
this is merely a matter of convenience (or habit), and it
generally makes no real difference for the file because it
remains a plain text file in either case. For example:

vi apple.txt
To close a file to which no changes have been made, hit
ESC (the Esc key, which is located in the upper left hand
corner of the keyboard), then type :q (a colon followed by
a lower case "q") and finally press ENTER. (The term "hit"
is used here instead of "press" to emphasize that it is not
necessary to keep the ESC key held down but just to
press it momentarily.)

To close a file to which changes have been made (such as
text having been added or removed) without saving the

changes, hit ESC, type :q! and then press ENTER. This
is sometimes referred to as a "forced quit."

vi works with a buffer (a block of memory in the RAM
chips). When you open an existing file, vi copies that file
from the hard disk (or floppy, CDROM, etc.) to a buffer. All
changes that you make to a file are initially made only to
the copy in the buffer, and they are only made to the file
itself when you "save" your changes. "Saving" a file means
writing (i.e., transferring) the contents of the buffer to the
hard disk (or floppy disk).

Likewise when you open a new file. All text you enter (and
subsequent edits you make to it) exists only in the buffer
until you save the file to disk.

To save the changes that have been made to a file, hit
ESC, type :qw and then press ENTER. The "w" stands for
"write." An alternative, and perhaps easier, way to save a
file and quit at the same time is to hit ESC and then type
ZZ (two capital Z's in succession).

After you have created a new text file and closed it, you
might want to confirm that nothing went wrong and that
the file actually exists. Probably the simplest way to do
this is to use the standard Unix ls command, which
displays a list of all of the files in the current directory.

Entering text
vi has two basic modes of operation: command mode and
text insert mode. How to switch back and forth
between them is probably the most confusing thing about
vi for beginners. But it is actually very simple, and once
you get used to it you might also find it quite efficient.

Command mode is the default mode when a file (existing
or new) is opened. (This is the opposite of most text and
word processors and therefore may seem counter-intuitive.)
Because every file opens initially in command mode, you
can not immediately begin typing text. That is, everything
that is typed on the keyboard is interpreted by vi to be a
command.

Examples of the many types of commands can perform
on a file while in command modes are:-

• Switching to text insert mode.

• Moving the cursor around the file.

• Deleting characters or lines.

• Transposing characters.

• Changing case.

• Appending the contents of the file to another (closed)
file.

• Setting vi options.

• Saving the file to disk.

• Closing the file and quitting vi.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

72

The other mode, text insert mode, is also referred to as
simply "insert mode" or "input mode." It is used for entering
text into the buffer memory (and simultaneously onto the
screen). In this mode everything that is typed on the
keyboard is added to the text and does not become a
command (although you can perform some command
operations in text mode with vi clones).

The most common way to switch from command mode to
the input mode is to use the i (which stands for "insert" or
"input") command. This is accomplished by simply typing
the letter i while in command mode. Now you are ready to
start typing text.

Unlike word processors and even most word editors, there
is no automatic word wrap in the traditional version of vi
(although you will notice it in some clones). New lines are
started by pressing ENTER.

When finished typing text or need to perform some other
operation such as moving to a different position in the text
or deleting some of it, hit ESC in order to return to the
command mode.

Once you have typed some text, you can use the four
basic commands for moving the cursor around the text.
These commands enable you to go to any desired location
in order to modify the text, including making insertions
and deletions. The four basic cursor positioning commands
are:

h move cursor one character to left

j move cursor one line down

k move cursor one line up

l move cursor one character to right

Each of these commands can be either used by itself or
modified by typing an integer in front of it to indicate the
number of characters or lines to move. For example, typing
(in command mode, of course)

3j - will move the cursor down three lines. Or typing 2h will
move it two characters to the left.

These commands can be repeated by holding the key
down. If attempting an impossible movement, such as
pressing k when the cursor is on the top line, the screen
might flash or a beeping sound might be made (depending
on how your computer is set up).

The cursor can be moved directly to any desired line by
using the G command preceded by the line number. For
example, typing

5G - moves the cursor to the fifth line from the top of the
text. Just typing G without any number moves the cursor
to the final line of text.

When you switch from command mode to input mode
with the i command and then start typing text, each
character you type is placed to the left of the character
covered by the cursor. This causes the character covered
by the cursor as well as everything to its right to be shifted
to the right.

There will be times when it need to place a character to
the right of the character under the cursor. This is
particularly useful when the cursor is over the last character
in a line and you want to append the line. To do this,
simply use the a (lower case "a," which stands for "append")
command instead of the i command to switch from
command mode into insert mode.

After it have saved a file that have created or modified
using vi, might want to verify that its contents are really
what you had intended. One way to do this is to use cat,
the Unix concatenation utility. (No, this has no relationship
to the popular domesticated animal whose name has the
same spelling). For example, type:

cat /home/john/fruit/lemon
Editing Text
vi offers a rich assortment of commands for editing text.
Among the most basic are those used for deleting or
erasing.

The x (lower case "x") command deletes the character
immediately under (i,e., covered by) the cursor. To delete
any desired character, just switch to the command mode
(if you are not already there) and then use an appropriate
combination of the h, j, k and l commands (of course, one
at a time) to move the cursor to that character. Then type
x and the character is deleted.

By pressing x continuously instead of just hitting it once,
the cursor continuously moves to the right and each
character under it is successively deleted.

The X (upper case "X") command is similar except that it
deletes the character to the left of the cursor rather than
the character under it.

There are several additional commands for deleting text.
The D (upper case "D") command removes the text on the
current line from the character under the cursor to the end
of the line.

The d (lower case "d") command is very flexible because
it can be modified to delete any number of characters,
words or lines. Typing d by itself will not do anything, but
typing dw causes the character the cursor is resting on
and the remaining characters to the right of it in the same
word to be deleted. (The "w" stands for "word.")

Typing 2dw causes the character under the cursor, the
remaining characters to the right of it in the same word
and all of the characters in the next word to be deleted.
For example, typing 2dw with the cursor on the "a" of the
string "pineapple plantation" causes the string "apple
plantation" to be deleted.

As another example, typing 3dw with the cursor on the "j"
of the string "the bluejay flew south" causes the string
"jay flew south" to be deleted. That is, "jay" and two words
to the right of it are deleted.

Deleting an entire line can be accomplished with the dd
command. This command can also be used to delete
multiple lines by preceding it with an integer representing
the number of lines to be removed. For example, typing

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

73

2dd will delete two consecutive lines beginning with the
current line.

With some terminals, deletion of a line causes it to be
replaced on the screen with an "@" character. This
character merely represents an empty line and is not
inserted into the text. Its purpose is to relieve the processor
from having to redraw the screen (i.e., change the whole
screen). This character can be removed if desired by typing
r (or l on some terminals) while holding down the CTRL
key.

The change command c (lower case "c") differs from the
delete command in that it not only deletes a section of
text but also activates insert mode to allow you to type in
replacement text. After you have completed typing in the
replacement text, be sure to press ESC to return to the
command mode.

As is the case with d, the c command is not used by itself
but is only used in combination with another letter after it
and an optional integer before it.

For example, the command cw (which stands for "change
word") deletes the characters in the current word under
and to the right of the cursor and then switches vi to the
insert mode so that you can enter text to replace the deleted
characters. The number of new characters typed in can
be the same as, fewer or more than the number deleted.

The amount of text to be changed can be increased by
preceding the command with a number. For instance, typing
2cw will additionally remove the next word for replacement
with whatever is typed in. The space between the words is
not preserved.

The d and c commands can also be modified by other
characters in addition to "w." For example they can be
used with "b," which stands for "back." Thus, typing3bd
will delete the characters to the left of the cursor in the
current word together with the two words to the left of the
current word.

The cc command erases the current line, leaving it blank
and awaiting replacement text. Preceding this command
with an integer will delete that number of lines, beginning
with the current line. For example, typing 5cc will allow
you to change five consecutive lines starting with the current
line.

Another change command, R, differs from the c commands
in that it does not initially delete anything. Rather, it
activates insert mode and lets you replace the characters
under the cursor one at a time with characters that you
type in.

vi supports several types of transposition. Transposing the
order of two adjacent characters is easy with the xp
command. Just place the cursor on the left-most of the
two characters, type x to erase the left character and then
type p for the deleted character to be put to the right of the
cursor.

Two adjacent words can be transposed with the deep
command. To use it, position the cursor in the space just
to the left of the word on the left and type deep. Two adjacent

lines can be transposed with the ddp command by placing
the cursor on the upper line and typing ddp.

It is also a simple matter to change the case of a letter.
When the cursor is over the desired letter, hit the "~" (tilde)
key. This will change a capital letter to a small letter and
visa versa.

The J (upper case "J") command is used to join the next
line to the current line. The opposite operation, splitting a
line, is accomplished in insert mode by merely positioning
the cursor over what will be the first character of the new
line and then hitting ENTER.

vi also has an undo capability. The u (lower case "u")
command is used to reverse the effects of an already issued
command that has changed the buffer, but which is not
yet written to disk. U (upper case "U") undoes all of the
changes that have been made to the current line during
your current visit to it

Searching Text
vi also has powerful search and replace capabilities. To
search the text of an open file for a specific string
(combination of characters or words), in the command
mode type a colon (:), "s," forward slash (/) and the search
string itself. What you type will appear on the bottom line
of the display screen. Finally, press ENTER, and the
matching area of the text will be highlighted, if it exists. If
the matching string is on an area of text that is not currently
displayed on the screen, the text will scroll to show that
area.

The formal syntax for searching is:

:s/string
For example, suppose you want to search some text for
the string "cherry." Type the following and press ENTER:

:s/cherry
The first match for "cherry" in your text will then be
highlighted. To see if there are additional occurrences of
the same string in the text, type n, and the highlight will
switch to the next match, if one exists.

The syntax for replacing one string with another string in
the current line is

:s/pattern/replace/
Here "pattern" represents the old string and "replace"
represents the new string. For example, to replace each
occurrence of the word "lemon" in a line with "orange,"
type:

:s/lemon/orange/
The syntax for replacing every occurrence of a string in
the entire text is similar. The only difference is the addition
of a "%" in front of the "s":

:%s/pattern/replace/
Thus repeating the previous example for the entire text
instead of just for a single line would be:

:%s/lemon/orange/

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

74

Working with multiple files
It is easy to insert text into an open file from another file.
All that is necessary is to move the cursor to the location
where you want the text inserted, then type

:r filename
where "filename" is the name of the file to insert.

For example, if you want to copy the contents of the file
"peach" into the file "fruit," you would first position the
cursor to the desired line in "fruit" and then type

:r peach
Notice that this operation causes no change to the file
"peach."

You can also append text from the currently open file to
any other file. This is accomplished using the :w (colon +
"w") command followed without a space by >>. For
example, to append the contents of a currently open file
named "pear" to the file named "apple," type

:w>> apple
At times it can be convenient to open multiple files
simultaneously. This is efficiently accomplished by just
listing all of the files to be opened after the vi command.
For example, to simultaneously open files about three kinds
of fruit, type:

vi apple pear orange
This allows you to edit "apple" first. After saving "apple,"
typing :n calls up "pear" for editing.

If you want to simultaneously open all files in the current
directory, just type vi * (vi + space + asterisk).

Additional operations
As you have learned, creating and opening files in vi can
be a very simple matter. However, many combinations of
options are available that can add much power and
flexibility for these tasks, as can be seen by looking at
the full syntax for opening files:

vi [flags] [cmd] [filename]
The square brackets ([]) around each section of arguments
(modifiers) of the command indicates that they are optional.
(That is, a file can be opened by just typingvi alone or by
typing it with any combination of the three arguments. For
instance, the example of vi dog contains only the
mandatory vi and the optional third argument, which is the
name of the file to open.)

As only one of many possible examples of adding options
for opening files, an existing file can be opened with the
cursor appearing on any desired line instead of just on the
first line. (One situation in which this can be particularly
useful is if your file is part of a program which you are
writing and the compiler reports an error on a specific line
in that file.) This is accomplished by adding the + (plus
sign) command followed the desired line number. For
example, to open the file "apple" with the cursor located
on the third line, type:

vi +3 apple
Use of the + command without any modifying number
opens a file with the cursor positioned on the last line of
text. This can save some keystrokes when you want to
open a file just to append data to the end of it. For example:

vi + apple
You have already learned several commands for switching
from command mode to insert mode, including i for
inserting to the left of the cursor position, a for inserting to
the right of the cursor position and the c commands for
changing text. A more complete list is as follows:

 a appends after current cursor position.

 A appends at end of current line.

 c starts a change option.

 C starts a change option from current position
to end of current line.

 i inserts to the left of the cursor position.

 I inserts at start of line.

 o cursor moves to new, blank line below its
current position.

 O cursor moves to new, blank line above its
current position.

 R replaces characters one at a time.

A simple way to obtain basic information about any file
that is currently open, including name, size and the current
line number, is to hold down CTRL and type g. This data
appears on the bottom line of the display.

Summary of commands
The following list contains the basic commands presented
in the first eight pages of this tutorial along with occasional
examples of usage (shown in parenthesis). They are
presented in roughly the same order in which they appear
in the tutorial. (All commands that begin with a colon are
followed by ENTER.)

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

75

vi

typed at the command line to open one or more files in the same directory
(vi tomato.txt opens a file named "tomato.txt" in the current directory)
(vi parsley sage rosemary opens the three files "parsley," "sage" and
"rosemary" in the current directory)

vi * typed at the command line to open every file in the current directory

:q closes (quits) a file to which no changes have been made

:q! quits without saving any changes

:w writes (i.e., saves) the current file to disk

:wq writes the buffer contents to disk (i.e., saves changes) and quits

ZZ same as :wq

i activates text insert mode, inserting text immediately under the current
position of the cursor.

h
moves the cursor one character to the left
(2h moves the cursor two characters to the left)

j moves the cursor one line down
(3j moves the cursor three lines down)

k moves the cursor one line up

l moves the cursor one character to the right

G
moves the cursor to the desired line; moves the cursor to the last line of text
if not preceded by a modifying integer
(5G moves the cursor to the fifth line)

a switches to insert mode and allows insertion of text immediately to the right
of the cursor.

x
deletes the character immediately under the cursor
(xxx deletes the character immediately under cursor and then deletes the
two characters to its right)

X deletes a single character to the left of cursor

D removes the text on the current line from the character under the cursor to
the end of the line

dw

deletes the character immediately under the cursor and the remaining
characters to the right of it in the same word
(2dw deletes the character immediately under the cursor, the remaining
characters to the right of it in same word and all of the next word)

dd
deletes the entire line containing the cursor, and the cursor then moves to
the next line
(2dd deletes two consecutive lines beginning with the current line)

cw

deletes the character under the cursor and to its right in the same word and
allows new characters to be typed in to replace them
(2cw deletes the character under the cursor and to its right in the same
word and in the next word, and then allows replacement characters to be
typed in)

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

76

cc
erases the current line and allows replacement text to be typed in
(2cc erases the current line and the next line and allows replacement text to
be typed in for both lines)

cb

deletes the characters to the left of the cursor in the current word and allows
replacement characters to be typed in
(3cb deletes the characters to the left of the cursor in the current word
together with the two words to its left and then allows replacement text to be
typed in)

R activates text input mode allowing text under and to the right of the cursor to
be overwritten one character at a time

xp transposes two adjacent characters
deep transposes two adjacent words
ddp transposes two adjacent lines
~ changes case of the character under the cursor
J joins the current line with the next line
u reverses the effects of the most recent command that has changed the buffer
U undoes all changes made to the current line during the current visit to it

:s/
searches the text for the first instance of a designated string
(:s/cucumber searches the text for the first instance of the string
"cucumber")

n searches the text for the next instance of a designated string

:s/ / /
replaces the first instance of a designated string
(:s/cucumber/radish/ replaces the first instance of the string "cucumber" with
the string "radish")

:%s/

/ /

replaces every instance of a designated string
(:%s/cucumber/radish/ replaces every instance of the string "cucumber" with
the string "radish")

:r
inserts text into the currently open file from another file
(:r lettuce.txt inserts text into the currently open file from the file named
"lettuce.txt")

:w>>
appends the text from the currently open file into another file
(:w>> cabbage appends the text from the currently open file into the file
named "cabbage")

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

77

pico editor
pico is a simple text editor in the style of the pine
composer.

Syntax
pico [options] [file]

Description
pico is a simple, display-oriented text editor based on the
pine message composer. As with pine, commands are
displayed at the bottom of the screen, and context-sensitive
help is provided. As characters are typed they are
immediately inserted into the text.

Editing commands are entered using control-key
combinations. As a work-around for communications
programs that swallow certain control characters, you can
emulate a control key by pressing ESCAPE twice, followed
by the desired control character. For example, "ESC ESC
c" would be equivalent to entering a ctrl-c. The editor has
five basic features: paragraph justification, searching, block
cut/paste, a spelling checker, and a file browser.

Paragraph justification (or filling) takes place in the
paragraph that contains the cursor, or, if the cursor is
between lines, in the paragraph immediately below.
Paragraphs aredelimited by blank lines, or by lines
beginning with a space or tab. Unjustification can be done
immediately after justification using the control-U key
combination.

String searches are not sensitive to case. A search
begins at the current cursor position and wraps around
the end of the text. The most recent search string is

offered as the default in subsequent searches.

Blocks of text can be moved, copied or deleted with
creative use of the command for mark (Ctrl-^), delete
(Ctrl-k) and undelete (Ctrl-u). The delete command will
remove text between the "mark" and the current cursor
position, and place it in the "cut" buffer. The undelete
command effects a "paste" at the current cursor
position.

The spell checker examines all words in the text. It then
offers each misspelled word for correction while highlighting
it in the text. Spell checking can be cancelled at any time.
Alternatively, pico will substitute for the default spell
checking routine a routine defined by the SPELL
environment variable. The replacement routine should read
standard input and write standard output.

The file browser is offered as an option in the "Read File"
and "Write Out" command prompts. It is intended to help
in searching for specific files and navigating directory
hierarchies. Filenames with sizes and names of directories
in the current working directory are presented for selection.
The current working directory is displayed on the top line
of the display while the list of available
commands takes up the bottom two. Several basic file
manipulation functions are supported: file renaming,
copying, and deletion.

Movement commands:
Depending on your system, the arrow keys or the
backspace key may not work. Instead, you can use these
commands to perform the same tasks.

 To Hold down Ctrl key and press Instead of

Delete a character backspace backspace

Move up a line p up arrow

Move down a line n down arrow

Move left one space b left arrow

Move right one space f right arrow

Move to the end of line e end

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

78

Some pico editor options

^C Cancel allows you to stop a process at any time. If
you make a mistake, just hold down the Ctrl key and
press c.

^G get help

Get clear and concise assistance from the Pico help, in
case something unexpected happens or you need
additional information about a command.

^X Exit

Exit Pico at anytime. If made changes to a file or worked
on a new file, but you havent saved the changes, you see
this message:

Save modified buffer (ANSWERING "No" WILL DESTROY
CHANGES) (y/n)?

Answering no (press n) will close Pico and bring you back
to the prompt without saving your file.

Answering yes (press y) will allow you to save the file
you've been working on (see Write Out section below for
details).

^O WriteOut

Save the file without hassles or worries. Fill in the name
of the file beside the File Name to write: prompt. If the file
already has a name, then press enter.

^T To Files option lets to save the text over a file that
exists in the directory. By choosing the To Files option,
Pico takes you to a directory Browser.

^R Read File

Insert text from another file into your current text file. This
option allows you to search through your directories for a
file that you would like to add to your text. This option is
especially handy if you've saved a document and would
like to add its content to the new file you're working on.
Text from the file you select is placed on the line directly
above your cursor.

At the Insert file : prompt you may either type a file name
or use the Browser options.

^T To Files option lets you import a text file directly into
the file you're currently typing. By choosing the To Files
option, Pico takes you to a directory Browser.

^Y Prev Pg

Move quickly to the previous page. Although you could
just as easily press the up arrow key several times, this
command quickly jumps your cursor up one page.

^V Next Pg

Move quickly to the next page. Although you could just
as easily press the down arrow key several times, this
command quickly jumps your cursor down one page.

^K Cut text

Cut a line of text. This option allows you to cut a full line
of text. By using the uncut command and your arrow
keys, you can then paste the cut text at another location
in your document. To cut specific text in a line or to cut
several lines of text, first select the text (see Selecting
Text on the next page).

Selecting text

To select text for cutting and pasting use the following
steps:

Move the cursor to the beginning of the text to select

Hold down the Ctrl key and press ̂

Use the right arrow key or hold down Ctrl and press f to
highlight text

When you have highlighted the appropriate text, hold down
the Ctrl key and press k to cut it.

Paste the text you cut, anywhere in your document, using
UnCut Text

^U UnCut Text

Paste text that previously cut. if use this option to undo
an accidental cut of text or place cut text at another location
in the document. The text you cut is pasted on the line
directly above the cursor.

^C Cur Pos

Indicate the current position of the cursor, relative to the
entire document. This is a helpful option if you'd like to
check exactly where in the document. The status line
indicates the following items:

[line 8 of 18 (44%), character 109 of 254 (42%)]

^J Justify

Even out lines of text. This command is handy when
accidentally type extra spaces between words or press
the key before reaching the end of a line. The option
evens the length of text lines automatically.

^U UnJustify

UnJustify lines of text. For the messy line look you can
always select the UnJustify option.

^W Where is

Find a particular string of text quickly. This option allows
you to do a word search in your text. This option is
especially handy for longer documents. If the word you
designated at the Search: prompt is found, it places the
cursor beside it.

^T To Spell

Check for spelling errors. The spell check option allows
to correct spelling errors throughout the document. If spell

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

79

checker finds a misspelled word or a word it doesn't
recognize (don't worry, this rarely happens), it will correct
the word. At the Edit a replacement: prompt, type in the
correct spelling of a word. However, if you don't want to
make any changes, simply press the enter key.

Any words that have corrected but re-occur in the document
can be automatically replaced. At the Replace a with b?
[y]: prompt press y to replace all occurrences of the
misspelled word or n to ignore.

Pine Editor

pine is a program for accessing email and newsgroups.

Syntax

pine [options] [address, address]

Description

pine is a screen-oriented message-handling tool. In its
default configuration, pine offers an intentionally limited
set of functions geared toward the novice user, but it also
has a growing list of optional power-user and personal-
preference features. pine's basic feature set includes:

• View, Save, Export, Delete, Print, Reply and Forward
messages.

• Compose messages in a simple editor (pico) with word-
wrap and a spelling checker. Messages may be
postponed for later completion.

• Full-screen selection and management of message
folders.

• Address book to keep a list of long or frequently-used
addresses. Personal distribution lists may be defined.
Addresses may be taken into the address book from
incoming mail without retyping them.

• New mail checking and notification occurs
automatically.

• Context-sensitive help screens.

pine supports MIME (Multipurpose Internet Mail
Extensions), an Internet Standard for representing
multipart and multimedia data in email. pine allows you to
save MIME objects to files, and in some cases, can also
initiate the correct program for viewing the object. It uses
the system's mailcap configuration file to determine what
program can process a particular MIME object type. pine's
message composer does not have multimedia capability

itself, but any type of data file (including multimedia) can
be attached to a text message and sent
using MIME's encoding rules. This allows any group of
individuals with MIME-capable mail software to exchange
formatted documents, spread-sheets, image files, etc, via
Internet email.

pine uses the "c-client" messaging API to access local
and remote mail folders. This library provides a variety of
low-level message-handling functions, including drivers for
a variety of different mail file formats, as well as routines
to access remote mail and news servers, using IMAP
(Internet Message Access Protocol) and NNTP (Network
News Transport Protocol). Outgoing mail is usually handed
off to the send mail program but it can optionally be posted
directly via SMTP.

Examples

Pine

Launch pine.

pine address@example.com

Launch pine, and immediately begin composing an email
addressed to address@example.com.

Joe editor

'joe'- sounds like a comic strip. Actually, they are two other
text editors that I like and I think are a little easier to
manage. They're like 'vi' in that you use them to create
and edit non-formatted text, but they're a little more user-
friendly. Using 'joe' 'joe' was created by Joseph Allen, so
that's why it's called Joe.

The majority of joe's commands are based on the CTRL-K
keys and a third key. The most important of these is CTRL-
K-H which gets 'help'. Help shows the key combinations
to use with 'joe'.

The most important thing about 'joe' is the logical concept
that you can just start writing if you want. Try writing
anything you want.

To save it, press CTRL-K-D. To save and quit, CTRL-K-X.

To quit without saving, CTRL-C, (without the K).

The feature of 'joe' is that if edit a file again, it will save the
previous file with a tilde on the end, like 'tryjoe~' That little
tilde file has saved times. 'joe' is a very good option for
writing those short text files.

IT & ITES : COPA - (NSQF Level - 4): Related Theory for Exercise 1.5.24 - 1.5.26
Copyright @ NIMI Not to be Republished

