A conventional battery with vent plugs is considered fully charged when the electrolyte is gassing freely and when no further rise in the specific gravity is noted at intervals of 1 hours. A sealed battery should be slow charged until the green dot appears in the built-in hydrometer. In some instances, a sealed battery must be slightly shaken to allow the green dot to appear.

Fast charging (Fig 8): Fast charging will not fully recharge a battery, it will restore the charge sufficiently to allow the battery to be used.

Fast charging consists of charging a battery at a rate from 10 to 50A. The exact charging rate depends on the construction of the battery, the condition of the battery and the time available. The temperature of the electrolyte provides an indication of the current charging rate. If the electrolyte temperature rises above 125°F (65°C), the charging rate is too high and should be reduced. Since a high charging rate and the resultant high temperature can damage a battery, a battery should be charged at the lowest possible rate.

Features of sealed maintenance free battery

- No need for checking electrolyte level and tapping throughtout the life.
- Seal construction ensures no leakage of electrolyte from terminal or casing.

Electricity effects

Objectives: At the end of this lesson you shall be able to • state electro chemical process

- state electro chemical process
 state the effect of an electric currents.
- state the enect of an
 state thermo couple
- state thermo electric energy
- state piezo electric energy.

Chemical sources (Electro chemical process) (Fig 1)

If two electrically conducting materials (metals) are immersed in salt solutions, an electric charge is produced between the two metals (electrodes, poles). Two examples are given below.

Copper and Zinc in salt solution is one combination

Lead and sulphuric acid is another combination.

This arrangement is known as wet cell and gives direct current. The second combination is used in a Lead Acid Battery for Motor vehicles.

Benefits

- Saving of 100 litres of distilled water through out its life time as compared to convention batteries.
- Saving of man power for regular topping up & cleaning corroded terminals as in conventional batteries.
- No damage of flooring by spoilage of batteries acid or water during maintenance.
- No need of separate battery room.

Dynamic electricity (Fig 2)

The current is produced by A/C or D/C generators, by conversion of mechanical energy into electrical energy. The generation of electric current is based on the fact when a conductor is moved in a magnetic field an E.M.F is set up in the conductor. When a large number of conductors are moved in a powerful magnetic field, high voltages and current are produced. This is the Principle of Dynamo.

The effect of an electric current

Let us now study effects of an electric current. When an electric current flows through a circuit, its presence could be analysed by its effects. They are stated below.

Chemical effect (Fig 3)

When a current is applied to a battery from a battery charger various chemical reactions are produced which enable the electrical energy to be stored in a chemical form.

The process is called charging a battery by electrolysis method (using electric current).

Heating effect (Fig 4)

When a current is applied to a bulb filament (fine wire) it becomes white hot and thus produces light.

Magnetic effect (Fig 5)

 If a soft iron bar is placed in a coil of wire and a current is passed through the wire, the iron bar becomes magnetised. If the current is withdrawn the bar with retain some magnetism depending on the materials.

 If a bar magnetic is moved in a coil of wire, to and fro then in the coil of wire a current flow, is established. This can be seen by connecting a "Galvanometer". The current, will flow only when the bar magnet is moving actually. Because, the turns of coil of wire should cut the lines of force.

Shock effect

If the current flow through Human body, it may give a severe stock or cause even death of the individuals so everyone must be careful in dealing with electrical current during work.

Note

In motor vehicle trade application, the following effect electric current are widely used

- Chemical effect-for battery.
- Heating effect-Head lamp bulbs for lighting.
- Magnetic effect-Electro magnets in relays and cuts.

Thermocouple (Fig.6)

This is such an arrangement where circuit is closed by wires of different metals. One metal wire is kept at low temperature and the other at high temperature. In this way thermo-electro motive force is created which can be seen by galvanometer. This works on the effect of see back.

Thermo electric energy

Thermo electric energy is the electrical energy produced by waste heat of an IC engine using seebeck effect.

Thermo electric generated can convert waste heat from an engine coolant or exhaust into electricity.

Piezo - electric energy

Piezo electric sensor is a device that uses the piezo electri effect to measure the changes in pressure, acceleration or force, by convertring them to an electrical charge.

Application

Used to initiate combustion in the IC engine mounted into a holes into the cylnider head.Glow plug is a in-built miniature piezo-electric sensor.

Photo voltaic energy

Photo volatile (PV) is a term which covers the conversion of light into electricity by using semiconducting materials that exhibit the photovoltaic effect. This effect is seen in combination of two layers of semi conductor materials, one layer of this combination will have it depleted number of electrons.

When sunlight strikes on this layer, it absorbs the photons of sunlight ray and consequently the electrons are excited and jump to the other layer. This phenomenon creates a charge difference between the layer and resulting to a tiny potential difference between them.

The unit of such combination of two layers of semi conductor materials, for producing electric potential deference in sunlight is called solar cell. Silicon is normally used as solar cell. For building cell, silicon material is cut and very thin wafers. Some of these wafers are doped with impurities. Then both doped and undated wafers are and switched together to build solar cell. A metallic strip is reached to two extreme layers to collect current.

A desired number of solar cell are connected together in both parallel and series to form a solar module for producing desired electricity.

The solar cell can also work in cloudy weather as well is moon light but the rate of production of electricity low as and it depends up on intensity of incident light ray.

(Fig 7) Describes the typical system of solar panels, controller, energy storage, inverter for converting DC into AC and how the system is connected to power grid.

Solar panels installation may be ground, rooftop or wall mounted. The solar panels mount may be fixed a solar tracker to follow the sun across the sky.

Photo voltaic systems have long been used in specialized applications and stand alone and grid-connected PV systems have been in use since the 1990. After hydro and wind powers, PV is the third renewable energy source in term of global capacity. The PV energy covering approximately two percent of global electricity demand. It is an environmentally clean source of energy and it is free and available in adequate quantities in all the parts of world.

Advantages of solar photo voltaic: Solar panels once installed. Its operation generates no pollution and no green house gas emissions it is simple salability in respect of power needs and silicon has large availability in earth

Disadvantages of solar photovoltaic: The power output is dependent on direct sunlight. That 10-25% is lost, if a tracking system is not used. Dust, clouds and other obstruction in the atmosphere also diminish the power output. Solar photovoltaic power needs to be stored for later use.

Electrostatic effects: It has been known that some materials such as amber attract light weight particles after rubbing. Electrostatic phenomena arise from the force that electric charges exert on each other. Such forces are described by coulomb's law. Electrostatics involves the buildup of charge on the surface of objects due to contact with other surfaces. Although charges exchange happens whenever any two surfaces contact and Separate the effects of charge exchange are usually only noticed when atleast one of the surfaces has a high resistance to electrical flow. This because the charges that transfer are trapped therefore a time long enough for their effects to be observed. These charges than remain on the object until they either bleed off to ground or quickly neutralized by discharge.

Ballast resistor: A ballast resistor is a resistor inserted into a circuit to compensate for different changes or a resister that has the property of increasing in resistance as current decreases. This resistor is used in car engines produced with breaker points type ignition primary circuit, between battery and ignition coil.

Solenoid & relay

Objectives: At the end of this lesson you shall be able to

- define a relay
- · classify relays according to the operating force and function
- explain the function of current sensing relay & Voltage sensing relay
- state solenoid and its application
- describe a solenoid switch and its function.

Relay: A relay is a device which opens or closes an auxiliary circuit under predetermined conditions in the main circuit.

Relays are extensively used in electronics, electrical engineering and many other fields.

There are relays that are sensitive to conditions of voltage, current, temperature, frequency or some combination of these conditions.

Classification of relays

Relays are also classified according to their main operating force as stated under

- Electromagnetic relays
- Thermal relays

Electromagnetic relay: A relay switch assembly is a combination of movable and fixed low - resistance contacts that open or close a circuit. The fixed contacts are mounted on springs or brackets, which have some flexibility. The movable contacts are mounted on a spring or a hinged arm that is moved by the electromagnet int he relay as shown in Fig 1.

The other types of relays coming under this group are as follows.

Current sensing relay: A current sensing relay functions whenever the current the coil reaches an upper limit. The difference between the current specified for pick up (must operate) and non - pick up (must non operate) is usually closely controlled. The difference in current may also be closely controlled for drop out (must release) and non - drop out (must not release).

Voltage sensing relay: A voltage sensing relay is used where a condition of under - voltage or over - voltage may cause a damage to the equipment. For example, these types of relays are used in voltage stabilizers. Either a proportional AC voltage derived from a transformer or a proportional DC derived from a transformer and rectifier is used for this purpose.

Solenoid

Solenoid is a coil wound into a tightly packed to a long thin loop of wire, often wrapped around a metalic core, which produces a uniform magnetic field in a volume of space. (Fig. 2)

Application

Need for solenoid switch: The solenoid switch is a strong electromagnetic switch. It is used to operate the over running clutch drive pinion to engage with the fly wheel ring gear. It also acts as a relay to close the contacts between the battery and the staring motor.

Construction of solenoid switch (Fig 3): In a solenoid there are two windings, a pull-in winding (1) and a hold - in winding (11). The pull - in winding (10) is wound with thick wires (series winding) and the hold - in winding (11) is of thin wires (shunt winding). The pull-in winding (10) is connected to the starter switch (3) in the solenoid.

The hold in winding (2) is connected across the switch terminal and ground. The two windings are wound around a hollow core (4). An iron plunger (5) is placed inside the core (4). The other end of the plunger moves a shift lever (7) to engage the pinion (8) with the fly wheel ring gear (9).

Function of solenoid switch: When the starter switch (Fig.3) (3) is turned, current flows the battery to the solenoid windings (1) and (2). This energises the windings which pull the plunger (5). The plunger (5) operates the shift lever (7) to engage the pinion (8) on the flywheel ring gear (9). Then it closes the circuit between the battery (10) and the starter motor.

Transformers and alternators

Objectives: At the end of this lesson you shall be able to

- describe a two winding transformer
- explain the ignition coil as a step up transformer
- state the function of a transformer
- describe a function of a alternator and its parts.

Two-winding transformers

A transformer in its simplest form consists of two stationary coils coupled by a mutual magnetic flux (Fig 1). The coils are said to be mutually coupled because they link a common flux.

Laminated steel core transformers are used in power applications. As shown in Fig 1, the current flowing in the coil connected to the AC source is called the primary winding or simply primary. The primary is the input to a transformer. It sets up the flux in the core, which varies periodically both in magnitude and direction. The flux links the second coil, called the secondary winding or simply the secondary.

The flux is changing; therefore, it induces a voltage in the secondary by electromagnetic induction. Thus the primary receives its power from the source while the secondary supplies this power to the load. This action is known as transformer action. There is no electrical connection between these two coils.

Transformers are afficient and reliable devices used mainly to change voltage levels. Transformers are efficient because the rotational losses are absent; so little power is lost when transforming power from one voltage level to another. Typical efficiencies are in the range of 92 to 99%. The higher values apply to the large power transformers. There is no change in frequency of voltage.

Transformer

A transformer is an electrical device that transforms the AC voltage between two circuit through an electromagnetic induction.

A transformer may be used as a safe and efficient voltage convertor to change the AC/DC voltage and its to a higher / lower voltage its ouput without changing the frequency and power.

Types

- 1 Step up transformer
- 2 Step down transformer

Application

Transformer is used in (1) ignition coil in petrol engine ignition system.

Ignition coil (Fig. 2)

It is used to step up low voltage to high voltage to generate sparks. In consists of two windings, one is woundo ver soft iron core. The secondary winding (1) is wound over the core (2). It consists of about 21,000 turns. One end of the winding is connected to the secondary terminal (3) and the other end to the primary winding (4). The primary winding (4) is wound over the secondary winding (1) and consists of about 200-300 turns. The ends are connected to the external terminal (5,6) of coil. The bakelite cap (7) insulates the secondary terminal from the container and primary terminals.

Alternator

Alternators are used in cars trucks tractors and two wheelers.

Alternators has two main functions

- 1 To charge the battery.
- 2 To supply current to the vehicle while it is running.

Description

The alternator is a 3 phase machine of the revolving field and stationary armature type. Its output from the stator windings is rectified by means of built in silicon diodes in heat sinks mounted within the slip diodes in heat sinks mounted within the slip ring end shield. Output control is effected by varying the rotor excitation. The machine is self limiting in terms of output current. Cooling is provided by a radial fan mounted on the drive end of the rotor shaft. The standard machine is insulated return version. The regulator is housed in the alternator itself.

Terminal arrangement

The alternator has three terminals i.e. positive terminal, negative terminal and warning lamp terminal 'WL'.

Rectifier

The rectifier pack comprises of nine silicon diodes, six main output diodes and three field diodes .

Rotor - Forged claw or pressed claw rotors are used. A pair of four fingered claws envelope the field shaft from the 8 pole imbricated rotor. The ends of the windings are brought out an connected to two slip rings at the end of the rotor assembly. The rotor is supported by bearings housed on the two end brackets (Fig 3).

Stator

The stator assembly comprises of a pack of laminations housing a three phase winding in the slots. The stator is held in position by the Drive End (DE) and Slip Ring End (SRE) shields (Fig 4).

Diodes

Objectives: At the end of this lesson you shall be able to

- state the meaning of semiconductors
- state how P and N materials are formed
- state the unique property of a PN junction
- list the different classifications of diodes
- state the polarity
- list a few type numbers/code numbers of diodes.

Semiconductors

Semiconductors are materials whose electrical property lies between that of Conductors and Insulators. Because of this fact, these materials are termed as semiconductors. In conductors the valence electrons are always free. In an Fig 3 CURRENT BRUSHES SLIP RINGS SLIP RINGS SHAFT

In-built regulator - This is a fully transistorised device with no moving parts, requiring no service attention. The transistors, diodes and resistors are fixed on a printed circuit base and then encapsulated. No cutout relay is necessary as the diodes in the alternator prevent reverse currents from the battery flowing through the stator when the machine is stationary or when generating less than the battery voltage. As the alternator is self limiting in current output, the regulator has only to control voltage which it does by regulating the alternator field current.

The regulator is housed in then alternator in between SRE shield and cowl by means of three studs.

insulator the valence electrons are always bound. Whereas in a semiconductor the valence electrons are normally bound but can be set free by supplying a small amount of energy. Several electronic devices are made using semiconductor materials. One such device is known as Diode.

1) N-type semiconductors

When a pentavalent material like Arsenic (As) is added to a pure Germanium or pure Silicon crystal, one free electron results per bond as shown in Fig 1a. As every arsenic atom donates one free electron, arsenic is called the donor impurity. Since a free electron is available and since the electron is of a Negative charge, the material so formed by mixing is known as **N type material.**

When a N-type material is connected across a battery, as shown in Fig 1b, current flows due to the availability of free electrons. As this current is due to the flow of free electrons, the current is called electron current.

2) P-type semiconductors

When a trivalent material like Gallium(Ga) is added to a pure Germanium or pure Silicon crystal, one vacancy or deficit of electron results per bond as shown in Fig 2a. As every gallium atom creates one deficit of electron or hole, the material is ready to accept electrons when supplied. Hence gallium is called acceptor impurity. Since vacancy for an electron is available, and as this vacancy is a hole which is of Positive charge, the material so formed is known as **P-type material**.

When a P-type material is connected across a battery as shown in Fig 2b, current flows due to the availability of free holes. As this current is due to flow of holes, the current is called hole current.

P-N junction

When a P-type and a N-type semiconductors are joined, a contact surface between the two materials called PNjunction is formed. This junction has a unique characteristic. This junction, has the ability to pass current in one direction and stop current flow in the other direction. To make use of this unique property of the PN junction, two terminals one on the P side and the other on the N side are attached. Such a PN junction with terminals attached is called a **Diode.** The typical symbol of a PN-junction diode is shown in Fig 3a.

Types of diodes

The PN junction diodes discussed so far are commonly referred to as *rectifier diodes*. This is because these diodes are used mostly in the application of rectifying AC to DC.

Classification of Diodes

- 1 Based on their current carrying capacity/power handling capacity, diodes can be classified as
 - low power diodes
 can handle power of the order of several milliwatts only
 - medium power diodes
 - can handle power of the order of several watts only

high power diodes

can handle power of the order of several 100's of watts.

2 Based on their principal application, diodes can be classified as,

Signal diodes

low power diodes used in communication circuits such as radio receivers etc. for signal detection and mixing

Switching diodes

low power diodes used in switching circuits such as digital electronics etc. for fast switching ON/ OFF of circuits

Rectifier diodes

medium to high power used in power supplies for electronic circuits for converting AC voltage to DC.

Polarity marking on the diodes

The cathode end of a diode is usually marked by a circular band or by a dot or by plus (+) sign. In some diodes the symbol of the diode, which itself indicates the polarities, is printed on the body of the diode.

Transistors and classification

Objectives: At the end of this lesson you shall be able to

- · state the two main uses of transistors
- list the advantages of transistors over vacuum tubes
- list the important classifications of transistors
- state the use of a transistor data book
- state about thyristor and characteristics of SCR
- explain working of SCR
- describe a thermistor and its usage.

Introduction to Transistors

Transistors are the semiconductor devices having three or four leads/terminals. Fig 1a shows some typical transistors. Fig 1b shows the symbols used for different types of transistors.

Transistors are mainly used for enlarging or amplifying small electric/electronic signals as shown in Fig 2. The circuit which uses transistors for amplifying is known as a transistor amplifier.

Other important application of transistors is its use as a solid state switch. A solid state switch is nothing but a switch which does not involve any physical ON/OFF contacts for switching.

Type number or diode code number

Unlike resistors, capacitors or inductors, the diodes do not have any value that can be printed or coded on its body. The other reason for this is, there are almost innumerable types of diodes with varied current handling and other specifications. Hence, instead of printing its specifications on its body, all diodes will have a type number printed on their body. This type number carries a set of specifications which can be found out by referring to a diode data manual. Diode data manuals give data of several thousands of diodes from different manufacturers. Some of the popular type numbers of diodes are

OAxx,	xx - from 70 to 95.	examples:
		OA79, OA85 etc.,
BYxxx,	xxx- from 100	examples:
	onwards,	BY127, BY128 etc.
DRxxx,	xxx- from 25	examples:
	onwards.	DR25, DR150 etc.,
1Nxxxx	examples: 1N917	1N4001, 1N4007 etc.

Transistors can be thought of as two PN junction diodes connected back to back as shown in Fig 3.

Before the transistors were invented (1947), there was vacuum tubes which were used in amplifiers. A typical vacuum tube is shown in Fig 4a.

Compared with the present day transistors the vacuum tubes were big in size, consumed more power, generated lot of unwanted heat and were fragile. Hence vacuum tubes became obsolete as soon as transistors came to market.

Transistors were invented by Walter H. Brazil and John Barlow of Bell Telephone Laboratories on 23rd Dec. 1947. Compared to vacuum tubes (also known as valves), transistors have several advantages. Some important advantages are listed below;

- Very small in size (Fig 4)
- Light in weight
- Minimum or no power loss in the form of heat
- Low operating voltage
- Rugged in construction.

To satisfy the requirements of different applications, several types of transistors in different types of packaging are available. As in diodes, depending upon the characteristics, transistors are given a type number such as BC 107, 2N

6004 etc., The characteristics data corresponding to these type numbers are given in Transistor data books.

Classification of Transistors

1 Based on the semiconductor used.

- Germanium transistors
- Silicon transistors

Like in diodes, transistors can be made, using any one of the above two important semiconductors. However, most of the transistors are made using silicon. This is because, silicon transistors work better over a wide temperature range (higher thermal stability) compared to germanium transistors.

Transistor data books give information about the semiconductor used in any particular transistor.

2 Based on the way the P and N junctions are organized as shown in Fig 5.

- NPN transistors
- PNP transistors

Both NPN and PNP transistors are equally useful in electronic circuits. However, NPN transistors are preferred for the reason that NPN has higher switching speed compared to PNP.

Whether a transistor is PNP or NPN can be found with the help of transistor data book.

3 Based on the power handling capacity of transistors as shown in Table below (Fig 6).

Low power transistors, also known as small signal amplifiers, are generally used at the first stage of amplification in which the strength of the signal to be amplified is low. For example, to amplify signals from a microphone, tape head, transducers etc.,

Medium power and high power transistors, also known as large signal amplifiers are used for achieving medium to high power amplification. For example, signals to be given to loudspeakers etc. High power transistors are usually mounted on metal chassis or on a physically large piece of metal known as heat sink. The function of heat sink is to, take away the heat from the transistor and pass it to air.

Transistor data books give information about the power handling capacity of different transistors.

Thyristor and the characteristics of SCR

Introduction: Thyristors are four layer device which can be switched 'on' or 'off' electronically to control relatively large amounts of current for motors and other electrical equipments. The Silicon Controlled Rectifier (SCR) and the triac are examples of thyristor. Almost all electronic controls used in modern industries consist of electronic circuits with thyristors.

Working of SCR: The SCR is a four-layer device with three terminals, namely, the anode, the cathode, and the gate. When the anode is made positive with respect to the cathode (Fig 7), junction J_2 is reverse-biased and only the leakage current will flow through the device. The SCR is then said to be in the forward blocking state or off-state. When the anode-to-cathode voltage is increased, the reverse-biased junction J_2 will break down due to the large voltage gradient across the depletion layers. This is the avalanche breakdown. Since the other junctions J_1 and J_3 are forward-biased, there will be free carrier movement across all the three junctions, resulting in a large anode-to-cathode forward current I_F . The voltage drop V_F across the device will be the ohmic drop in the four layers, and the device is then said to be in the conduction state or on-state.

In the on-state, the current is limited by the external impedance. If the anode-to cathode voltage is now reduced, since the original depletion layer and the reverse-biased junction J_2 no longer exist due to the free movement of the carriers, the device will continue to stay on. When the forward current falls below the level of the holding current

 ${\rm I}_{\rm h}$, the depletion region will begin to develop around ${\rm J}_2$ due to the reduced number of carriers, and the device will go to the blocking state. Similarly, when the SCR is switched on, the resulting forward current has to be more than the latching current ${\rm I}_{\rm L}$. This is necessary for maintaining the required amount of carrier flow across the junctions; otherwise, the device will return to the blocking state as soon as the anode-to-cathode voltage is reduced. The holding current; its magnitude is in the order of a few milliampere(mA). When the cathode is made positive with respect to the anode, junctions ${\rm J}_1$ and ${\rm J}_3$ are reverse-biased, and a small reverse leakage current will flow through the SCR. This is the reverse blocking state of the device.

Set the multimeter to a low range. Adjust to zero and infinity with the adjustment knob. Connect the SCR as shown in Fig 8. The meter will not indicate any reading. Even the test prods are interchanged because of the junctions. The multimeter shows infinite resistance. Connect the SCR as shown in Fig 8. When the gate is touched momentarily with the anode prods, the meter reads low resistance between 30 and 40 Ohm. When the gate is removed, the meter still continues to read the same value of 30 and 400hm.

This means that the SCR is in good working condition. If the meter does not show any reading, the SCR is faulty. When the gate is given a small forward bias, the gate switching the SCR and the internal resistance of the junction is low, so the current can flow easily from the cathode to the anode. Once the SCR is conducted, even if the gate's forward bias is removed, the SCR anode-to-cathode current will flow through the meter, and the multimeter will continue to read a low resistance, ie 30 to 400hm.

Thermistor: It is also semiconductor device used in most vehicles today. They are named because they are actually a temperature sensitive resistor. It is made of powdered nickel, cobalt, copper, iron and manganese which has been fused together at a higher temperature. The electrical resistance of a thermistor changes greatly with temperature.

Thermistors are used to detect various temperatures or changes in temperature. Their most frequent use involves the measurement of engine coolant temperature, or inlet air temperature.

In the most common type of thermistor, the resistance decreases as the temperature increases. This type is called a negative temperature coefficient (NTC) thermistor. Some thermistors are of the positive temperature coefficient (PTC) type. This means that the resistance of the thermistor

Uni-Junction Transistor (UJT)

Objectives: At the end of this lesson you shall be able to

- explain the construction, equivalent circuit and symbol of an UJT
- state the application of UJT.

The Uni-junction transistor (UJT): The uni-junction transistor consists of a bar of lightly doped n-type silicon with small piece of heavily doped P-type material joined to one side at 60% of height from the base as shown in Fig 1a. The end terminals are named as base $1(B_1)$ or Cathode (K) and base $2(B_2)$ or anode (A) and the P-type material as emitter (E). The highly doped n-type material has a high resistance and can be represented by two resistor r_{B1} and

increases with temperature. NTC type thermistors are used in automobiles as engine coolant temperature sensors as shown in Fig 9.

Thermistors can also be used to detect the temperature of the air. Many of the computer controlled fuel system in use utilize air temperature as an input. These are easily installed and wired into the computers and will have their resistance changes seen as temperature changes.

 r_{B2} . The sum of r_{B1} and r_{B2} is designated as R_{BB} (Fig 1b). The emitter (P-type) form a PN junction with the n-type silicon bar and this junction is represented by a diode in the equivalent circuit (Fig 1b). The circuit symbol is shown in Fig 1c.

Application of UJTs: UJTs are employed in a wide variety of circuits involving electronic switching and voltage or current sensing applications.

Field effect transistors

Objectives: At the end of this lesson you shall be able to

- explain the difference between bi-polar transistors and field effect transistors
- state about JFET, its construction and working
- explain about biasing a JFET.

Field Effect Transistor (FET)

The main difference between a Bi-polar transistor and a FET is, bi-polar transistor is a current controlled device.

In simple terms it means that the main current in a bi-polar transistor is controlled by the base current.

FET is a voltage controlled device.

This means that the voltage at the gate controls the main current.

In addition to the above, in a bi-polar transistor, the main current always flows through N-doped and P-doped semiconductor materials. Where as in a FET the main current flows either only through the N-doped semiconductor or only through the P-doped semiconductor as shown in Fig 1.

If the main current flow is only through the N-doped material, then such a FET is referred as a P-channel or P type FET. The current through the P-doped material in the P-type FET is only by Holes.

Unlike in bipolar transistors in which the main current is both by electrons and holes. In contrast in FETs depending on the type(P or N type) the main current in either by electrons and holes and never both.for this reason FETs are also known as Unipolar transistors or unipolar device.

Junction Field effect Transistor (JFET)

It is a three terminal device and looks similar to a bi-polar transistor. The standard circuit symbols of N-channel and P-channel type FETs are shown in Fig.2.

Construction

As shown in Fig 3a, a n-channel JFET has a narrow bar of n-type. To this, two p-type junctions are diffused on opposite sides of its middle part fig 3a. These diffused junctions form two PN diodes or gates. The N-type semiconductor area between these junctions/gates is called the channel. The diffused P regions on opposite sides of the channel are integrally connected and a single lead is brought out which is called gate lead or terminal. Direct electrical connections are made at the two ends of the bar. One of which is called source terminal, S and the other drain terminal, D.

A p-channel FET will be very similar to the n-channel FET in construction except that it uses P-type bar and two N-type junctions as shown in Fig 3b.

FET notation listed below are essential and worth memorizing.

- **1** Source terminal: It is the terminal through which majority carriers enter the bar (N or P bar depending upon the type of FET).
- 2 Drain terminal: It is the terminal through which majority carriers come out of the bar.
- **3 Gate terminal:** These are two internally connected heavily doped regions which form two P-N junctions.
- 4 **Channel:** It is the space between the two gates through which majority carriers pass from source to drain when FET is working (on).

Working of FET

Similar to Bipolar transistors, the working point of adjustment and stabilization are also required for FETs.

Biasing a JFET

Gates are always reverse biased. Therefore the gate current Ig is practically zero.

The current source terminal is always connected to that end of the supply which provides the necessary charge carriers. For instance, in a N-channel JFET source terminal S is connected to the negative of the d.c power supply. And, the positive of the d.c power supply is connected to the drain terminal of the JFET.

Where as in a P channel JFET, Source is connected to the positive end of the power supply and the drain is connected to the negative end of the for the drain to get the holes from the P-channel Where the holes are the charge carriers.

Where as in a N channel JFET, the drain is made positive with respect to source by voltage Vds as shown Fig 4a. When gate to source voltage Vgs is zero, there is no control voltage and maximum electron current flows from source(S)through the channel-to the drain (D). This electron current from source to drain is referred to as Drain current,Id. When gate is reverse biased with a negative voltage as shown in Fig 4b, the static field established at the gate causes depletion region to occur in the channel as shown in Fig 4b.

This depletion region decreases the width of the channel causing the drain current to decrease.

If Vgs is made more and more negative, the channel width decreases further resulting in further decreases in drain current. When the negative gate voltage is sufficiently high, the depletion regions meet and block the channel cutting off the flow of drain current as shown in Fig 4c. This voltage at which this effect occurs is referred to as the pinch off voltage, Vp.

Thus, by varying the reverse bias voltage between gate and source (-Vgs), the drain current can be varied between maximum current (with –Vgs=0) and zero current (with – Vgs=pinch off voltage).So, JFET can be refferred as a voltage controlled devices.

P channel JFET operates in the same way as explained above except that bias voltages are reversed and the majority carrier of channel are holes.

Metal Oxide Field Effect Transistor (MOSFET)

Objectives: At the end of the lesson you shall be able to

- state the MOSFET's operation principle and its types
- list the special type of MOSFET
- explain the features of MOSFET.

In MOSFETs, control is via an insulating layer instead of a junction (as in JFETS). This insulating layer is generally made of silicon dioxide, from which the very name MOSFET is derived (Metal Oxide Semiconductor). Some times the MOSFETs are also referred to as Insulated-gate FET, for which the abbreviation used are IFET or IGFET.

Type of MOSFET

Depletion-type MOSFET

Construction and mode of operation

Fig 1 shows the construction of a depletion $\ensuremath{\mathsf{MOSFET}}$ of the n-channel type.

Here, two highly doped n-zones are diffused into p-doped silicon plate, which is referred to as the substrate, and are provided with junction-free drain and source connections.

Between the two zones there is a thin weakly n-doped channel, which produces an electrical connection between the source and drain without an external field-action. This channel is covered by an insulting layer of silicon dioxide (SIO_2) , to which a metal electrode is applied as the gate connection.

If a voltage U_{DS} is applied between source and drain, at U_{GS} =)V an electron current flows from the source electrode via the n-channel to the drain electrode. If, however, a negative voltage is applied to control electrode G, the electrons present in the n-channel are forced out of the vicinity of the gate electrode, so that a zone depleted of charge carriers is produced there. This causes a constriction of the nchannel and consequently also a reduction of its conductivity. If the gate voltage becomes more negative, the conductivity of the channel is reduced, as is consequently also the drain current I. Another peculiarity of depletion type MOSFET s is that they can also be controlled with a positive gate-voltage. charge carries are then drawn out of the P-doped substrate into then-channel and its conductivity is increased even further, compared with the conductivity at U_{GS}- OV

Designations and circuit symbols

The same designations are used for the connections of MOSFETs as they are for JFETs, I,e. source, drain and gate. MOSFETs, however, have another electrode, which is referred to as the substrate connection. Together, which is referred to as the substrate connection, Together with the semiconductor material of the channel, this substrateforms a P-N junction, which can be used as a second control- electrode. It is then led out of the casing. Like the other electrodes is connected directly to the additional control possibility.

Fig 2 Shows the circuit symbols for depletion- type nchannel MOSFETs and p-channel MOSFETs. For the nchannel type, the arrow points towards the line representing the channel, in the case of the P-Channel type, on the other hand, it points away from the line representing the channel. The continuous line representing the channel indicates that it is depletion-type MOSFET.

N- Channel MOSFETs are operated with a positive drainsource Voltage. They have a considerably greater practical significance than p-channel MOSFETs, which require a negative drain-source voltage for their operation.

Enhancement-type MOSFET

Construction and mode of operation

Enhancement-type MOSFETs have a similar technological construction to the depletion types. Without the external action of a field. However no conducting channel exists between the drain connection and the source connection, so that at U_{GS} =)V, no drain current can flow, Fig 3. shows the construction of an enhancement-type n-channel MOSFET.

